Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1071
DC FieldValueLanguage
dc.contributor.authorNashine, Hemant Kumaren_US
dc.contributor.authorKadelburg, Zoranen_US
dc.date.accessioned2022-09-23T15:40:28Z-
dc.date.available2022-09-23T15:40:28Z-
dc.date.issued2016-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1071-
dc.description.abstractIn this paper, we prove existence and uniqueness results for common fixed points of two or three relatively asymptotically regular mappings satisfying the orbital continuity of one of the involved maps on ordered orbitally complete metric spaces under generalized Φ-contractive condition. Also, we introduce and use orbitally dominating maps and orbitally weakly increasing maps. We furnish suitable examples to demonstrate the usability of the hypotheses of our results. As an application, we prove the existence of solutions for certain system of integral equations.en
dc.relation.ispartofFilomaten
dc.subjectAsymptotically regular mapen
dc.subjectOrbital continuityen
dc.subjectOrbitally complete metric spaceen
dc.subjectPartially ordered seten
dc.subjectWeakly increasing mapsen
dc.titleCommon fixed point theorems for asymptotically regular mappings on ordered orbitally complete metric spaces with an application to systems of integral equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1612277N-
dc.identifier.scopus2-s2.0-85008343604-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85008343604-
dc.relation.firstpage3277en
dc.relation.lastpage3289en
dc.relation.volume30en
dc.relation.issue12en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

12
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.