Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1069
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nashine, H. K. | en_US |
dc.contributor.author | Vats, R. K. | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.date.accessioned | 2022-09-23T15:40:28Z | - |
dc.date.available | 2022-09-23T15:40:28Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.issn | 14509628 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1069 | - |
dc.description.abstract | In this paper, we utilize the family F and the notion of ω-distance in an ordered G-metric space and introduce (F, ω)-contractions in order to derive some fixed point results. We also discuss the problems of Ulam-Hyers stability, well-posedness and limit shadowing property. In order to illustrate the use of our results, we apply them to nonlinear integral equations, as well as to some three-point fractional integral boundary value problems, both with numerical examples. | en |
dc.relation.ispartof | Kragujevac Journal of Mathematics | en |
dc.subject | Fixed point | en |
dc.subject | Fractional integral boundary value problem | en |
dc.subject | G-metric space | en |
dc.subject | Partially ordered set | en |
dc.subject | Ulam-hyers stability | en |
dc.subject | ω-Distance function | en |
dc.title | Fixed point theorems under ω-distance functions and applications to nonlinear integral and fractional differential equations | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-85081338153 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85081338153 | - |
dc.relation.firstpage | 371 | en |
dc.relation.lastpage | 392 | en |
dc.relation.volume | 43 | en |
dc.relation.issue | 3 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Dec 18, 2024
Page view(s)
14
checked on Dec 24, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.