Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1068
DC FieldValueLanguage
dc.contributor.authorPourhadi, Ehsanen_US
dc.contributor.authorSaadati, Rezaen_US
dc.contributor.authorKadelburg, Zoranen_US
dc.date.accessioned2022-09-23T15:40:28Z-
dc.date.available2022-09-23T15:40:28Z-
dc.date.issued2020-01-01-
dc.identifier.issn13925113en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1068-
dc.description.abstractIn this paper, inspired by the idea of Meir–Keeler contractive mappings, we introduce Meir–Keeler expansive mappings, say MKE, in order to obtain Krasnosel’skii-type fixed point theorems in Banach spaces. The idea of the paper is to combine the notion of Meir–Keeler mapping and expansive Krasnosel’skii fixed point theorem. We replace the expansion condition by the weakened MKE condition in some variants of Krasnosel’skii fixed point theorems that appear in the literature, e.g., in [T. Xiang, R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear Anal., Theory Methods Appl., 71(7–8):3229–3239, 2009].en
dc.relation.ispartofNonlinear Analysis: Modelling and Controlen
dc.subjectKeeler contractiveen
dc.subjectKeeler expansiveen
dc.subjectKrasnosel’skii fixed point theoremen
dc.subjectMeiren
dc.subjectMeiren
dc.titleSome krasnosel’skii-type fixed point theorems for meir–keeler-type mappingsen_US
dc.typeArticleen_US
dc.identifier.doi10.15388/namc.2020.25.16516-
dc.identifier.scopus2-s2.0-85081205960-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85081205960-
dc.relation.firstpage257en
dc.relation.lastpage265en
dc.relation.volume25en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

Page view(s)

14
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.