Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1059
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abtahi, Mortaza | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Radenović, Stojan | en_US |
dc.date.accessioned | 2022-09-23T15:40:27Z | - |
dc.date.available | 2022-09-23T15:40:27Z | - |
dc.date.issued | 2018-01-01 | - |
dc.identifier.issn | 15769402 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1059 | - |
dc.description.abstract | New fixed point and coupled fixed point theorems in partially ordered ν-generalized metric spaces are presented. Since the product of two ν-generalized metric spaces is not in general a ν-generalized metric space, a different approach is needed than in the case of standard metric spaces. | en |
dc.relation.ispartof | Applied General Topology | en |
dc.subject | Coupled fixed point theorems | en |
dc.subject | Meir-Keeler contractions | en |
dc.subject | Proinov-type contractions | en |
dc.subject | Ćirić-matkowski contractions | en |
dc.subject | ν-generalized metric space | en |
dc.title | Fixed points and coupled fixed points in partially ordered ν-generalized metric spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4995/agt.2018.7409 | - |
dc.identifier.scopus | 2-s2.0-85055186673 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85055186673 | - |
dc.relation.firstpage | 189 | en |
dc.relation.lastpage | 201 | en |
dc.relation.volume | 19 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Dec 20, 2024
Page view(s)
20
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.