Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1055
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorRadenović, Stojanen_US
dc.date.accessioned2022-09-23T15:40:26Z-
dc.date.available2022-09-23T15:40:26Z-
dc.date.issued2016-12-01-
dc.identifier.issn16871820en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1055-
dc.description.abstractVery recently, Ma et al. (Fixed Point Theory Appl. 2014:206, 2014) introduced (Formula presented.) -algebra-valued metric spaces as a new concept. Also, Ma and Jiang (Fixed Point Theory Appl. 2015:222, 2015), generalizing this concept, introduced (Formula presented.) -algebra-valued b-metric spaces. In both frameworks, these and other authors proved some fixed point results. We show in this paper that all these results (as well as many others) can be directly obtained as consequences of their standard metric or b-metric counterparts.en
dc.relation.ispartofFixed Point Theory and Applicationsen
dc.subjectb-metric spaceen
dc.subjectC -algebra ∗en
dc.subjectC -algebra-valued metric space ∗en
dc.subjectcone metric space over Banach algebraen
dc.titleFixed point results in C<sup>∗</sup>-algebra-valued metric spaces are direct consequences of their standard metric counterpartsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s13663-016-0544-1-
dc.identifier.scopus2-s2.0-84964285706-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84964285706-
dc.relation.volume2016en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

20
checked on Dec 21, 2024

Page view(s)

47
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.