Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1052
DC FieldValueLanguage
dc.contributor.authorNashine, Hemant Kumaren_US
dc.contributor.authorShil, Souraven_US
dc.contributor.authorKadelburg, Zoranen_US
dc.date.accessioned2022-09-23T15:40:26Z-
dc.date.available2022-09-23T15:40:26Z-
dc.date.issued2022-
dc.identifier.issn00019054en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1052-
dc.description.abstractWe consider the system of non-linear matrix equations (NMEs) of the form X=B1+∑i=1kAi∗f(X)Ai,X=B2+∑i=1kAi∗g(X)Ai,where B1,B2 are two n× n Hermitian positive definite matrices, A1, A2,.., Am are n× n matrices, and f, g are two non-linear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of the given system. We demonstrate this sufficient condition for two different systems of NMEs. In order to do this, we introduce the notion of generalized orbital α-admissible pair of mappings and deduce common fixed points results for these mappings in b-metric-like spaces under so-called FG-contractive conditions. This is also demonstrated by a suitable example.en
dc.relation.ispartofAequationes Mathematicaeen
dc.subjectb-metric-like spaceen
dc.subjectCommon fixed pointen
dc.subjectNonlinear matrix equationen
dc.subjectPositive definite matrixen
dc.titleCommon positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00010-021-00846-2-
dc.identifier.scopus2-s2.0-85119361913-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85119361913-
dc.description.rankM23en_US
dc.relation.firstpage17en
dc.relation.lastpage41en
dc.relation.volume96en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 18, 2024

Page view(s)

18
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.