Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1046
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nashine, Hemant Kumar | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.date.accessioned | 2022-09-23T15:40:25Z | - |
dc.date.available | 2022-09-23T15:40:25Z | - |
dc.date.issued | 2020-01-01 | - |
dc.identifier.issn | 15835022 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1046 | - |
dc.description.abstract | In this work, we present some Wardowski-Feng-Liu type fixed point theorems for multi-valued mappings in complete (ordered) metric spaces. The obtained results generalize and improve several existing theorems in the literature. The given notions and outcome are illustrated by an appropriate example. An application to existence of solutions for Fredholm-type integral inclusions is presented. | en |
dc.relation.ispartof | Fixed Point Theory | en |
dc.subject | F-contraction | en |
dc.subject | Fixed point of a multivalued mapping | en |
dc.subject | Fredholm integral inclusion | en |
dc.title | Wardowski-feng-liu type fixed point theorems for multivalued mappings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.24193/fpt-ro.2020.2.49 | - |
dc.identifier.scopus | 2-s2.0-85108422920 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85108422920 | - |
dc.relation.firstpage | 697 | en |
dc.relation.lastpage | 706 | en |
dc.relation.volume | 21 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Dec 19, 2024
Page view(s)
7
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.