Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1044
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nashine, Hemant Kumar | en_US |
dc.contributor.author | Sintunavarat, Wutiphol | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Kumam, Poom | en_US |
dc.date.accessioned | 2022-09-23T15:40:25Z | - |
dc.date.available | 2022-09-23T15:40:25Z | - |
dc.date.issued | 2015-09-22 | - |
dc.identifier.issn | 10129405 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1044 | - |
dc.description.abstract | We prove a fixed point result in orbitally $$0$$0-complete partial metric spaces, using a variant of almost contractive condition that involves a rational expression. Also, a common fixed point result in $$0$$0-complete partial metric spaces is obtained. Several consequences are deduced and examples are presented, showing that the given result can be used for proving the existence of (common) fixed points when some known results fail. | en |
dc.relation.ispartof | Afrika Matematika | en |
dc.subject | Common fixed point | en |
dc.subject | Orbitally complete space | en |
dc.subject | Partial metric space | en |
dc.title | Fixed point theorems in orbitally 0-complete partial metric spaces via rational contractive conditions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s13370-014-0269-4 | - |
dc.identifier.scopus | 2-s2.0-84939644661 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84939644661 | - |
dc.relation.firstpage | 1121 | en |
dc.relation.lastpage | 1136 | en |
dc.relation.volume | 26 | en |
dc.relation.issue | 5-6 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.