Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1036
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mitrović, Zoran D. | en_US |
dc.contributor.author | Aydi, Hassen | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Soleimani Rad, Ghasem | en_US |
dc.date.accessioned | 2022-09-23T15:40:24Z | - |
dc.date.available | 2022-09-23T15:40:24Z | - |
dc.date.issued | 2020-12-01 | - |
dc.identifier.issn | 0009725X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1036 | - |
dc.description.abstract | In this paper, we prove versions of Khan type and Dass–Gupta type contraction principles in bv(s) -metric spaces. The results which we obtain generalize many known results in fixed point theory. Examples show how these results can be applied in concrete situations. | en |
dc.relation.ispartof | Rendiconti del Circolo Matematico di Palermo | en |
dc.subject | b-metric space | en |
dc.subject | b (s) -metric space v | en |
dc.subject | Fixed point | en |
dc.subject | Rectangular metric space | en |
dc.title | On some rational contractions in b<inf>v</inf>(s) -metric spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s12215-019-00465-6 | - |
dc.identifier.scopus | 2-s2.0-85074831915 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85074831915 | - |
dc.relation.firstpage | 1193 | en |
dc.relation.lastpage | 1203 | en |
dc.relation.volume | 69 | en |
dc.relation.issue | 3 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Dec 21, 2024
Page view(s)
10
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.