Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1022
DC FieldValueLanguage
dc.contributor.authorBožin, Vladimiren_US
dc.contributor.authorMateljević, Miodragen_US
dc.date.accessioned2022-08-17T11:43:01Z-
dc.date.available2022-08-17T11:43:01Z-
dc.date.issued2015-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1022-
dc.description.abstractUsing normal family arguments, we show that the degree of the first nonzero homogenous polynomial in the expansion of n dimensional Euclidean harmonic K-quasiconformal mapping around an internal point is odd, and that such a map from the unit ball onto a bounded convex domain, with K < 3n-1, is co-Lipschitz. Also some generalizations of this result are given, as well as a generalization of Heinz’s lemma for harmonic quasiconformal maps in Rn and related results.en
dc.relation.ispartofFilomaten
dc.subjectConvex codomainsen
dc.subjectHarmonic mappingsen
dc.subjectQuasiconformal mappingsen
dc.titleBounds for Jacobian of harmonic injective mappings in n-dimensional spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1509119B-
dc.identifier.scopus2-s2.0-84949475573-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84949475573-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.firstpage2119en
dc.relation.lastpage2124en
dc.relation.volume29en
dc.relation.issue9en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0001-3845-453X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 7, 2024

Page view(s)

6
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.