Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1021
DC FieldValueLanguage
dc.contributor.authorBhayo, B. A.en_US
dc.contributor.authorBožin, Vladimiren_US
dc.contributor.authorKalaj, D.en_US
dc.contributor.authorVuorinen, M.en_US
dc.date.accessioned2022-08-17T11:43:01Z-
dc.date.available2022-08-17T11:43:01Z-
dc.date.issued2011-08-15-
dc.identifier.issn0022247Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1021-
dc.description.abstractWe study vector functions of Rn into itself, which are of the form x→g(|x|)x, where g:(0,∞)→(0,∞) is a continuous function and call these radial functions. In the case when g(t)=tc for some c∈R, we find upper bounds for the distance of image points under such a radial function. Some of our results refine recent results of L. Maligranda and S.S. Dragomir. In particular, we study quasiconformal mappings of this simple type and obtain norm inequalities for such mappings. © 2011 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.subjectNormed linear spaceen_US
dc.subjectQuasiconformal mapen_US
dc.titleNorm inequalities for vector functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2011.02.029-
dc.identifier.scopus2-s2.0-79954997842-
dc.identifier.isi000290067000031-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/79954997842-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn0022-247Xen_US
dc.description.rankM21aen_US
dc.relation.firstpage768en_US
dc.relation.lastpage781en_US
dc.relation.volume380en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0001-3845-453X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 8, 2025

Page view(s)

5
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.