Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1018
DC FieldValueLanguage
dc.contributor.authorBožin, Vladimiren_US
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2022-08-17T11:43:00Z-
dc.date.available2022-08-17T11:43:00Z-
dc.date.issued2018-01-01-
dc.identifier.issn00029939en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1018-
dc.description.abstractThe well-known conjecture due to B. Korenblum about the maximum principle in Bergman space Ap states that for 0 < p < ∞ there exists a constant 0 < c < 1 with the following property. If f and g are holomorphic functions in the unit disk D such that |f(z)| ≤ |g(z)| for all c < |z| < 1, then ‖f‖Ap ≤ ‖g‖Ap. Hayman proved Korenblum’s conjecture for p = 2, and Hinkkanen generalized this result by proving the conjecture for all 1 ≤ p < ∞. The case 0 < p < 1 of the conjecture has so far remained open. In this paper we resolve this remaining case of the conjecture by proving that Korenblum’s maximum principle in Bergman space Ap does not hold when 0 < p < 1.en
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.subjectBergman spacesen
dc.subjectKorenblum’s maximum principleen
dc.titleFailure of korenblum’s maximum principle in bergman spaces with small exponentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/proc/13946-
dc.identifier.scopus2-s2.0-85044344444-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85044344444-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.firstpage2577en
dc.relation.lastpage2584en
dc.relation.volume146en
dc.relation.issue6en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0001-3845-453X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 14, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.