Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1018
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Božin, Vladimir | en_US |
dc.contributor.author | Karapetrović, Boban | en_US |
dc.date.accessioned | 2022-08-17T11:43:00Z | - |
dc.date.available | 2022-08-17T11:43:00Z | - |
dc.date.issued | 2018-01-01 | - |
dc.identifier.issn | 00029939 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1018 | - |
dc.description.abstract | The well-known conjecture due to B. Korenblum about the maximum principle in Bergman space Ap states that for 0 < p < ∞ there exists a constant 0 < c < 1 with the following property. If f and g are holomorphic functions in the unit disk D such that |f(z)| ≤ |g(z)| for all c < |z| < 1, then ‖f‖Ap ≤ ‖g‖Ap. Hayman proved Korenblum’s conjecture for p = 2, and Hinkkanen generalized this result by proving the conjecture for all 1 ≤ p < ∞. The case 0 < p < 1 of the conjecture has so far remained open. In this paper we resolve this remaining case of the conjecture by proving that Korenblum’s maximum principle in Bergman space Ap does not hold when 0 < p < 1. | en |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.subject | Bergman spaces | en |
dc.subject | Korenblum’s maximum principle | en |
dc.title | Failure of korenblum’s maximum principle in bergman spaces with small exponents | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/proc/13946 | - |
dc.identifier.scopus | 2-s2.0-85044344444 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85044344444 | - |
dc.contributor.affiliation | Real and Complex Analysis | en_US |
dc.relation.firstpage | 2577 | en |
dc.relation.lastpage | 2584 | en |
dc.relation.volume | 146 | en |
dc.relation.issue | 6 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Complex Analysis | - |
crisitem.author.orcid | 0009-0001-3845-453X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
8
checked on Nov 14, 2024
Page view(s)
11
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.