Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1011
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Božin, Vladimir | en_US |
dc.contributor.author | Karapetrović, Boban | en_US |
dc.date.accessioned | 2022-08-17T11:42:59Z | - |
dc.date.available | 2022-08-17T11:42:59Z | - |
dc.date.issued | 2018-01-15 | - |
dc.identifier.issn | 00221236 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1011 | - |
dc.description.abstract | It is well known that the Hilbert matrix operator H is a bounded operator from the Bergman space Ap into Ap if and only if 2<p<∞. In [5] it was shown that the norm of the Hilbert matrix operator H on the Bergman space Ap is equal to [Formula presented], when 4≤p<∞, and it was also conjectured that ‖H‖Ap→Ap=[Formula presented], when 2<p<4. In this paper we prove this conjecture. | en |
dc.relation.ispartof | Journal of Functional Analysis | en |
dc.subject | Bergman spaces | en |
dc.subject | Hilbert matrix | en |
dc.title | Norm of the Hilbert matrix on Bergman spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jfa.2017.08.005 | - |
dc.identifier.scopus | 2-s2.0-85028300382 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85028300382 | - |
dc.contributor.affiliation | Real and Complex Analysis | en_US |
dc.relation.firstpage | 525 | en |
dc.relation.lastpage | 543 | en |
dc.relation.volume | 274 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Complex Analysis | - |
crisitem.author.orcid | 0009-0001-3845-453X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
15
checked on Nov 8, 2024
Page view(s)
10
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.