Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1011
DC FieldValueLanguage
dc.contributor.authorBožin, Vladimiren_US
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2022-08-17T11:42:59Z-
dc.date.available2022-08-17T11:42:59Z-
dc.date.issued2018-01-15-
dc.identifier.issn00221236en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1011-
dc.description.abstractIt is well known that the Hilbert matrix operator H is a bounded operator from the Bergman space Ap into Ap if and only if 2<p<∞. In [5] it was shown that the norm of the Hilbert matrix operator H on the Bergman space Ap is equal to [Formula presented], when 4≤p<∞, and it was also conjectured that ‖H‖Ap→Ap=[Formula presented], when 2<p<4. In this paper we prove this conjecture.en
dc.relation.ispartofJournal of Functional Analysisen
dc.subjectBergman spacesen
dc.subjectHilbert matrixen
dc.titleNorm of the Hilbert matrix on Bergman spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfa.2017.08.005-
dc.identifier.scopus2-s2.0-85028300382-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85028300382-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.firstpage525en
dc.relation.lastpage543en
dc.relation.volume274en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0001-3845-453X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.