Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1000
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en_US |
dc.contributor.author | Jovanović, Tanja | en_US |
dc.date.accessioned | 2022-08-17T11:10:53Z | - |
dc.date.available | 2022-08-17T11:10:53Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1000 | - |
dc.description.abstract | The main result of this paper is the embedding (equation presented) 0 < r ≤ r1 ≤ ∞, 0 < s ≤ s1 ≤ ∞, β > -1, of harmonic functions mixed norm spaces on a smoothly bounded domain ω ⊂ ℝn. We also extend a result on boundedness, in mixed norm, of a maximal function-type operator from the case of the unit disc and the unit ball to general domains in ℝn | en |
dc.relation.ispartof | Open Mathematics | en |
dc.subject | harmonic functions spaces | en |
dc.subject | maximal functions | en |
dc.subject | mixed norm spaces | en |
dc.title | Embeddings of harmonic mixed norm spaces on smoothly bounded domains in ℝ<sup>n</sup> | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/math-2019-0108 | - |
dc.identifier.scopus | 2-s2.0-85075213622 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85075213622 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 1260 | en |
dc.relation.lastpage | 1268 | en |
dc.relation.volume | 17 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 8, 2024
Page view(s)
5
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.