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The departure of particle distributions from the Maxwellian is commonly observed in space plasmas. 
These non-Maxwellian distributions which are typical for plasmas that are not in thermal equilibrium, 
can be modeled with κ-distribution. Kinetic simulations of quasi-parallel collisionless shocks show that 
proton distribution is a composite of thermal, suprathermal, and non-thermal parts. By using particle-
in-cell shock simulations, we show that κ-distribution adequately fits thermal and suprathermal parts 
together, as a single continuous distribution in early proton spectra. We derive suprathermal proton 
distribution directly from the generalized entropy of non-extensive statistical mechanics, and show that 
thermal and suprathermal populations are both naturally embedded in κ-distribution. We find that 
the index κ of the distribution increases with the distance from the shock, following the decrease 
in suprathermal part. The non-equilibrium plasma distribution which is continuously being enriched 
with suprathermal particles at the reforming shock barrier, reaches the thermal equilibrium in the far 
downstream. The suprathermal part completely fades there, and the shape of proton distribution becomes 
a Maxwellian from which directly emerges a power-law.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The diffusive shock acceleration (DSA) theory as a promising 
mechanism of acceleration of particles at interstellar collisionless 
shocks, up to the cosmic-ray (CR) energies, was proposed inde-
pendently by Axford et al. (1977), Krymsky (1977) and Blandford 
and Ostriker (1978) and Bell (1978). Besides CRs observed at Earth 
that show a characteristic power-law spectral form predicted by 
the theory (but modified for effects of transport in the Galaxy), 
indirect evidence for DSA power-law spectra (for electrons, at 
least) come from e.g. radio observations of supernova remnants 
and other astrophysical synchrotron emitting sources (see e.g. Ar-
butina, 2017; Vink, 2020). Nevertheless, little is still known about 
the particle spectra at lower energies (momenta). An important in-
sight about the distribution function of particles at collisionless 
shocks in thermal, suprathermal and non-thermal regime can be 
provided by particle-in-cell (PIC) simulations. PIC and hybrid sim-
ulations (in which electrons are treated as a fluid) do, indeed, show 
the power-law spectra a’la Bell (1978) at higher momenta (Capri-
oli and Spitkovsky, 2014a,b,c; Caprioli et al., 2015). In this paper, 
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for the sake of completeness, we rederive the DSA theory to ac-
count for particles of lower momenta, introduce the κ-distribution 
as a plausible function for thermal and suprathermal parts of the 
spectra, and compare the theoretical spectrum with simulations.

2. Accelerated particles

Of all of the mentioned approaches to DSA, Bell’s (1978) mi-
croscopic approach is probably the most intuitive, since it tries to 
explain what is happening to individual particles in the process 
of acceleration. The idea is that sufficiently energetic particles can 
cross and recross the shock from downstream to upstream and vice 
verse multiple times, scattering of turbulence and magnetic insta-
bilities present, and, in each cycle, can gain energy i.e. momentum 
�p

p ≈ 4
3

u1−u2
v (as in 1st order Fermi acceleration). Bell (1978) ar-

gued that the probability of a particle engaged in DSA cycles to be 
advected downstream is P = 4u2

v , and consequently, the probabil-
ity to cross back to upstream and stay in DSA is

PB = 1 − 4u2

v
, (1)

where u2 is the velocity of the downstream plasma as seen from 
the shock frame, and v is a particle velocity in the plasma frame. 
We will rederive this probability inspired by approach found in 
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Vietri (2008) and Blasi (2012). Assuming a monoenergetic distribu-
tion of particles with number density dN = 4π p4 f (p)dp, the flux 
density in the shock frame ϕ = 1

2

∫
v ′dN ′dμ′ can be written as

ϕ = 1

2

1∫
−1

u2 + μv

1 + u2 vμ
c2

dNdμ, (2)

where v and μ = cos θ are now measured in the downstream 
frame, and f (p) is assumed to be isotropic. As seen from this 
frame, in which the downstream plasma is at rest, the shock is 
moving with velocity −u2, so the particles with vx = vμ > −u2

i.e. μ > − u2
v are able to cross the shock and return upstream. We 

can then define, similarly to Blasi (2012), flux densities

PB = |ϕout |
ϕin

, ϕin =
1∫

− u2
v

dϕ, ϕout =
− u2

v∫
−1

dϕ, (3)

and obtain a quite general expression for Bell’s probability

PB =

∣∣∣1 − u2
v − c2

u2 v

(
1 − u2

2
c2

)
ln

∣∣∣ 1− u2
2

c2

1− u2 v

c2

∣∣∣∣∣∣
1 + u2

v − c2

u2 v

(
1 − u2

2
c2

)
ln

∣∣∣ 1+ u2 v

c2

1− u2
2

c2

∣∣∣ . (4)

For non-relativistic shocks, i.e. u2 � c, one can check that the last 
expression reduces to

PB =
(

1 − u2
v

1 + u2
v

)2

≈ 1 − 4u2

v
. (5)

Armed with general Bell’s probability we are able to derive an 
approximate distribution function for non-thermal particles even 
at lower momenta. We are assuming all the time that we are in 
a test-particle regime, i.e. not considering CRs backreaction and 
modification of the shock (non-linear DSA). For two consequent 
DSA cycles k and k +1, we will have Nk+1/Nk =PB(k), where Ni =
N(p > pi) is the cumulative number of particles per unit volume 
with momentum larger than pi , and pk+1/pk ≈ 1 + 4

3
u1−u2

vk
. We 

will in the following omit index k in Nk → N , vk → v , and, sim-
ilarly to Caprioli et al. (2015), define cumulative number change 
and momentum gain G through:

�N

N
=→ dN

N
= −P = PB − 1 = − 4u2

v

(1 + u2/v)2
, (6)

�p

p
=→ dp

p
= G = 4(R − 1)

3

u2

v
, (7)

where R = u1/u2 is the compression ratio (u1 is shock velocity, 
as observed from laboratory frame). From the above equations, we 
have

d ln N

d ln p
= −P

G
, (8)

from which, by using dN = −4π p2 f dp, one can derive

d ln
(
G
P f

)
d ln p

= −
(P
G

+ 3
)

= −3
(

1 + 1

R − 1

1

(1 + u2
v )2

)
. (9)

This equation can be integrated to give the solution (for non-
relativistic shocks):
66
f (p) = 3NC R

4π(R − 1)p3
inj

(
1 + u2

vinj

) 3
R−1

(
p

pinj

)− 3R
R−1

×
(

1 + u2

v

)− 2R+1
R−1

e
3u2
R−1 ( 1

vinj+u2
− 1

v+u2
)
, (10)

where NC R is the total number of CRs, and pinj is some injection 
momentum. For p � mu2 Eq. (10) gives the well-known depen-
dence f (p) ∝ (p/pinj)

−3R/(R−1) i.e. f (p) ∝ p−4 for the standard 
compression R = 4. Deviation from the power-law i.e. the modifi-
cation at lower momenta may not be relevant because specularly-
reflected particles never become isotropic in the downstream, vi-
olating Bell’s initial assumption. Nevertheless, in Fig. 2 we have 
also plotted this distribution assuming that a fraction of particles 
at lower momenta complying with Bell’s assumption, conditionally 
speaking, belongs to the non-thermal, rather than suprathermal 
population.

3. Pre-accelerated and thermal particles

Because of the self-reforming behavior, the collisionless shocks 
are expected to produce non-equilibrium plasmas. Indeed, the non-
Maxwellian particle distributions are observed at the shock of su-
pernova remnants (Raymond et al., 2010). This is also found in 
kinetic (PIC or hybrid) simulations. Caprioli et al. (2015) suggested 
that the plasma distribution downstream of the shock can be de-
scribed by the sum of thermal, suprathermal, and non-thermal 
components, that we will denote with f T , f S and f N , respec-
tively. As described in the minimal model for ion injection (Caprioli 
et al., 2015), while most of the (thermal) ions will be advected and 
isotropized after crossing the shock, some ions can gain extra en-
ergy by performing a few gyrations while drifting along the shock 
surface (the shock drift acceleration – SDA). These suprathermal 
ions, if continuing SDA or micro-DSA (Zeković and Arbutina, 2019) 
cycles, can later provide the seed particles for the standard DSA 
mechanism.

By including the finite duty cycle of a reforming shock barrier, 
one can easily model the suprathermal transition observed in the 
particle spectra (Caprioli et al., 2015). This can be accomplished by 
assuming a modified probability for a particle to cross to upstream 
i.e. stay in the cycles, e.g. PA ·PB , where PA can be thought as a 
probability for a particle to pass through the shock of some finite 
thickness, not being halted or reflected back downstream. In the 
SDA case, Caprioli et al. (2015) assumed the constant total proba-
bility for a particle to overcome the periodically reforming shock 
barrier with the duty cycle, i.e. P = 1 − PAPB = 0.75. This im-
plies that roughly 75 percent of particles would be thermalized, 
while the remaining 25 percent would become suprathermal or 
non-thermal. If again

d ln S

d ln p
= −P

G
, (11)

where now S = S(> p) is the cumulative number of suprathermal 
particles, by using dS = −4π p2 f Sdp, one can derive

f S = 3N STP
16π(R − 1)mu2 p2

e
3P

4(R−1)mu2
(pmin−p)

, (12)

where N S T is the total number of suprathermal particles, and pmin

is the momentum at which particles enter SDA. We assumed that 
the particles are non-relativistic, i.e. p = mv . One can see that the 
number of suprathermal particles per unit momentum is actually 
an exponential function. For simplicity, f can be modeled as the 
sum, f T + f S + f N , where f N is taken to be in the standard power-
law form
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f N = 3NC R

4π p3
inj(R − 1)

(p/pinj)
−3R/(R−1) (13)

and the thermal distribution is a Maxwellian1

f T = N0

(2πmkT )3/2
e− p2

2mkT . (15)

The distributions f S and f N of course start at some initial mo-
menta pmin and pinj , respectively.

The minimal model tries to describe suprathermal and non-
thermal particle distributions, however it cannot describe the ther-
mal maximum in the spectra by a suprathermal distribution itself. 
One could also try to describe thermal and suprathermal parti-
cle distributions with one non-equilibrium distribution f = f N E . 
In order to model both these components as different features of a 
single, non-stationary plasma, in Arbutina and Zeković (2019) we 
introduced a κ-distribution. It is shown by Livadiotis (2017) that 
the state of a plasma which has not reached the thermodynamic 
equilibrium, can be characterized by this distribution, with index 
κ being a free parameter serving as sort of a measure of non-
equilibrium. Such distributions are common to the space plasmas 
(Livadiotis and McComas, 2011), including the Solar wind (Marti-
nović, 2016). Non-relativistic κ-distribution may be written as

f N E = N0

(πκ p2
0)

3/2

�(κ + 1)

�(κ − 1
2 )

1[
1 + p2

κ p2
0

]κ+1 , p2
0 = 2mkT (16)

which for κ → ∞ tends to become a Maxwellian. Note that T is 
not the usual thermodynamic temperature if plasma is out of equi-
librium.

In order to understand theoretically κ-distribution one can in-
troduce the Tsallis entropy, which is shown (Livadiotis, 2017; Tsal-
lis, 2017) to be the generalization of a Boltzmann-Gibbs (BG) en-
tropy from which Maxwellian distribution is derived. This gener-
alization naturally arises if instead of a standard relation of BG 
entropy SBG = −kB

∑W
i=1 pi ln pi (pi is the probability of state i) 

one assumes the most general relation S = kB
∑W

i=1 f (pi), where 
f (pi) is some arbitrary function of pi . By following the principle 
of maximization:

∂

∂ p j
S(p1, p2, ..., pW) + λ1 − λ2ε j = 0, (17)

and applying the energy additivity among two parts of the system:

εA+B
i j = εA

i + εB
j , (18)

the general (Tsallis) entropy is derived (Livadiotis, 2017):

S = kB
1

q − 1

W∑
i=1

(pi − pq
i ), q = 1 + 1

κ
. (19)

This entropy can be expanded to a series of infinite (q − 1)

terms as:

S = −kB

W∑
i=1

pi ln pi − kB

∞∑
n=2

[
1

n! (q − 1)n−1 ·
W∑

i=1

pi lnn pi

]
. (20)

1 If particles are relativistic, one has the Maxwell-Jütter distribution (see Synge, 
1957)

f T = N0

4πm3c2�K2(1/�)
e−

√
1+ p2

m2c2
� , (14)

where � = kT /(mc2), T is thermodynamic temperature and K2(x) the modified 
Bessel function of the 2nd order (see Abramowitz and Stegun, 1972).
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Table 1
The parameters of the run from left to the right: ion-to-electron mass ratio, ion 
magnetization (the ratio of magnetic to kinetic energy density), the shock velocity 
in the lab frame, the Alfven-Mach and sonic Mach numbers, and the simulation end 
time, respectively.

mi/me σi u1/c M A MS t [ω−1
ci ]

16 6 × 10−4 0.4 16 35 2220

From PIC runs (see the next section) we find that q ∼ 1.2, so we 
keep only the BG term and the n = 2 term in the series, as higher 
order terms become negligible:

S ∼= −kB

W∑
i=1

pi ln pi − kB
1

2
(q − 1) ·

W∑
i=1

pi ln2 pi . (21)

Since BG term describes the thermal component, the n = 2 term 
then must correspond to the departure from the equilibrium, 
which is caused by the presence of suprathermal particles. By us-
ing Eq. (17) with the n = 2 term, we derive this non-equilibrium 
departure from the thermal distribution function:

f� ∼ a · e
b

√
κ

mu2
(pmin−p)

, (22)

where a and b are constants.
We find that f� has very similar dependence on p as the 

suprathermal distribution f S given by Eq. (12) which is derived by 
assuming the constant escape probability (as in the minimal model 
of Caprioli et al., 2015). The shape of the distribution f� also finely 
agrees with the suprathermal distribution function given in Capri-
oli et al. (2015). The difference between f� and f S due to the 
extra dependence 1/p2 in f S , can be directly overcome by intro-
ducing a weak logarithmic dependence:

∼ 0.75 − c

(p − pmin)
ln

(
p

psh

)2

(23)

(where c is a constant) into the escape probability P in Eq. (12)
which is justified as p ∼ 1 − 2 psh in the range of suprathermal 
momenta. Also, by only adjusting the parameter b in Eq. (22), the 
distributions f� and f S can completely overlap.

Therefore, the theory implies that thermal and suprather-
mal distributions are both naturally embedded into single, non-
equilibrium plasma distribution function. The non-stationary re-
forming shock barrier thus acts as a generator of the non-
equilibrium states in plasma, that result in κ-distribution. While 
this unique distribution is commonly interpreted as a superpo-
sition of thermal and suprathermal components, it is actually 
composed of particles whose energies are set by a single physi-
cal process.

4. PIC simulations

We run the long 1D particle-in-cell simulation of an initially 
parallel collisionless shock by using the PIC code TRISTAN-MP 
(Spitkovsky, 2005). The parameters of the run are shown in Ta-
ble 1. As it is commonly done, we initiate the shock by reflecting 
the plasma beam from the left wall of a simulation domain. We 
use the expanding simulation box which enlarges ahead of the 
shock, as the moving plasma injector reaches the right wall of the 
domain. By this, we are able to significantly extend the evolution 
of a shock with the given mass ratio. We resolve the electron skin 
depth (c/ωpe) with 10 cells, and each cell initially contains 8 par-
ticles (4 electrons and 4 ions). The noise is reduced by filtering 
particle contribution to the current 32 times per timestep. As it is 
shown in Sironi and Spitkovsky (2011), the mass ratio mi/me = 16
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Fig. 1. The longitudinal phase space, density profile, and transverse B y and Bz magnetic field profiles, given at the simulation end time. The regions from which ion 
distributions are measured and plotted in Figs. 2 and 3, are shown in the top graph.

Fig. 2. The post-shock ion spectrum (the sampling region is marked by the brown square in Fig. 1). The dotted gray line denotes Maxwellian fit; the lighter blue and red 
lines correspond to κ-distribution fits for the cases of pure and modified power-laws, respectively; the dashed lines correspond to the two power-laws; the strong lines are 
the best κ + power law fits; the data is plotted as a thick, light-blue curve. The measured parameter κ and spectral slope γ of the momentum distribution f (p) ∝ p−γ are 
given for the two cases in the upper right corner.
is large enough to separate the ion and electron scales. By the 
simulation end time t ∼ 2220 ω−1

ci , the shock enters the quasi-
equilibrium stage. The phase space, and density and field profiles 
are given in Fig. 1.

At the beginning of the run, the Weibel-type instability (Weibel, 
1959) grows faster than Alfvènic type instabilities (Crumley et al., 
2019). Once the wave driven by the resonant instability (Zeković, 
2019) grows to ∼ B0, the shock (re)formation is further mediated 
by Alfvènic modes (as shown in Fig. 1). The current of reflected 
ions seeds the upstream wave via non-resonant streaming insta-
68
bility (Bell’s, or CR streaming instability; Bell, 2004; Amato and 
Blasi, 2009) which pre-accelerate particles at the shock interface 
through the SDA mechanism (Caprioli et al., 2015). The particles 
that escape upstream, become eligible to enter the DSA process.

The initial particle spectrum in PIC simulations is clearly not 
Maxwellian. This can also be seen in the spectral plot in Capri-
oli and Spitkovsky (2014a). We here report that the thermal and 
suprathermal components in ion spectra may correspond to the 
plasma that is in a transient state, which is ideally fitted by the 
κ-distribution function (see Fig. 2). We fit the whole momentum 



B. Arbutina and V. Zeković Journal of High Energy Astrophysics 32 (2021) 65–70

Fig. 3. The downstream ion spectra from the regions distributed at different distances behind the shock, which are marked in Fig. 1 by the same color coding as applied in 
this plot (red lines). The data is plotted in red: the darker lines correspond to the regions closer, and the lighter lines to the regions farther from the shock. The κ-distribution 
fits are represented by blue lines, each fit-line corresponding to the data-line with the same intensity level. The same color coding holds for the κ parameters given for each 
fit (the upper right corner). The Maxwellian fit of the spectrum corresponding to the farthermost downstream region, is plotted by the dotted gray line.
spectrum by the sum of κ and power-law distributions, where we 
at first find the best fit for κ-distribution. In the next step, we 
search for the best value of the momentum pinj at which ions 
are injected into DSA, so that the κ + power-law curve fits the 
whole spectrum (as shown in Fig. 2). We present the two fit-
ting combinations, one where we use the pure power-law given 
by Eq. (13), and the other which is modified at lower momenta 
according to Eq. (10). In both cases, we use Eq. (16) to fit the ther-
mal + suprathermal parts as one unique non-equilibrium plasma 
distribution. From the best fit we get that the momentum at which 
ions enter DSA is pinj ∼ 1.5–2 psh = 6–8 mu2. It is lower than the 
injection momentum given in the minimal model of Caprioli et al. 
(2015) which is defined as a momentum that particles need to 
reach by performing few SDA cycles in order to enter DSA. Here, 
we define pinj as a momentum at which only a small fraction of 
ions that will eventually reach high energies (whose amount is less 
than 4% according to Caprioli et al., 2015) enter their first cycle of 
acceleration – the momentum gained after the first specular re-
flection. Since these ions originate from the tail of κ-distribution 
(to the right of pinj ) we do not expect exactly δ-function injection 
into DSA, but rather a steep power-law injection (see Arbutina, 
2017), meaning that pinj approximately represents the lowest in-
jection momentum. By the power-laws shown in Fig. 2, we there-
fore model only the population of ions that escaped the reforming 
shock barrier and populated the non-thermal tail in the process of 
DSA. For those ions, an energy gain per each cycle is that of DSA 
(the same as in Caprioli et al., 2015) and their escape probability 
is the Bell’s probability (given by Eq. (5)) from the first reflection 
(even during SDA). This confirms our previous assumptions that 
SDA governed by the instabilities at quasi-parallel shocks, can also 
be described by a process which is physically the same as DSA 
(Zeković and Arbutina, 2019). As scattering centers during the first 
few reflections (SDA cycles) are provided by the micro-structure of 
a reforming shock barrier itself, we have earlier named this pro-
cess a μ-DSA (Zeković and Arbutina, 2019).

In the previous section, we argued that the distribution of 
suprathermal particles (induced by a constant probability of es-
cape in SDA mechanism) can be derived directly from the second 
order term in Tsallis entropy, while Maxwellian distribution is de-
rived from the first order term, and higher order terms produce 
only smaller corrections. Therefore, we believe that the reforming 
barrier induces a non-equilibrium states in the shocked plasma. In-
69
stead of having independent distributions for each population, the 
out-of-equilibrium plasma can easily be modeled by a single parti-
cle distribution that encompasses both, thermal and suprathermal 
population of ions produced in a non-stationary shock reformation 
process.

In Fig. 3, we show the ion spectra captured at different re-
gions in the downstream. As moving farther from the shock, the 
κ-index in the particle distribution increases. This means that the 
plasma farther from the shock, appears to be closer to its equi-
librium state. In the limiting case, an infinite value of κ would 
correspond to the equilibrium case with the Maxwellian distribu-
tion.

By tracing the time evolution of the ion spectrum right behind 
the shock, we find that the value of κ-index varies in the range 
∼ 4–7. This however holds over the simulation time period, but 
may be subject to changes over the longer periods, or given the 
different shock parameters and inclinations relative to the mag-
netic field.

5. Conclusions

The conclusions of this work can be summarized as follows.

• We showed that the sum of thermal and suprathermal compo-
nents in the downstream ion spectrum can theoretically and 
empirically be represented by a single κ momentum distri-
bution, which is used to describe non-equilibrium plasmas. 
We used an approach of non-extensive statistical mechanics 
to show how the Maxwellian and the suprathermal distribu-
tion, that can be related to the particles with constant escape 
probability in the minimal model of Caprioli et al. (2015), can 
emerge directly from the generalized entropy.

• The spectra closer to the shock imply the non-equilibrium 
plasma states. Farther from the shock, the plasma settles 
down, the κ-index increases, and the κ-distribution takes the 
shape of a thermal Maxwellian distribution. The far down-
stream spectrum is thus composed only of a Maxwellian and 
a power law (as in the model of Blasi et al., 2005, or Arbutina 
and Zeković, 2021).

• The κ + modified power-law best fitting procedure gives 
vinj ∼ 1.5–2 vsh , which implies that ions enter the acceler-
ation process right after the first reflection. The probability of 
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particle being trapped by the reforming barrier, will determine 
which particles stay only energized and populate the down-
stream κ-distribution, and which among them will continue 
to accelerate through the DSA mechanism. The obtained in-
jection momentum remains nearly the same throughout the 
downstream.
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