See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/367511519

Signed graphs whose all Laplacian eigenvalues are main

Presentation · January 2023

CITATIONS		READS	
2		173	
3 authoi	's:		
	Milica Anđelić		Tamara Koledin
	Kuwait University	Δ	University of Belgrade
	98 PUBLICATIONS 549 CITATIONS		48 PUBLICATIONS 195 CITATIONS
	SEE PROFILE		SEE PROFILE
K)	Zoran Stanić		
	University of Belgrade		
	221 PUBLICATIONS 1,273 CITATIONS		
	SEE PROFILE		

Signed graphs whose all Laplacian eigenvalues are main

Milica Anđelić, Kuwait University, Kuwait joint work with

Tamara Koledin, and Zoran Stanić, University of Belgrade, Serbia

*This research is partially supported by the Science Fund of the Republic of Serbia; grant number 7749676: Spectrally Constrained Signed Graphs with Applications in Coding Theory and Control Theory – SCSG-ctct.

International Conference on Number Theory and Graph Theory ICNG-2023, January 18-20, 2023

Manipal, India

Milica Anđelić, Kuwait University

Signed graphs whose all Laplacian eigenvalues

- For a graph G we consider the problem of the existence of a switching equivalent signed graph with Laplacian eigenvalues that are all main and the problem of determination of all switching equivalent signed graphs with this spectral property.
- Using a computer search we confirm that apart from K₂ every connected graph with at most 7 vertices switches to at least one signed graph with the required property. This fails to hold for exactly 22 connected graphs with 8 vertices.
- If G is a cograph without repeated eigenvalues, then we give an iterative solution and the complete solution in the particular case when G is a threshold graph.

- Given a graph G = (V(G), E(G)), let $\sigma \colon E(G) \longrightarrow \{1, -1\}$. Then $\dot{G} = (G, \sigma)$ is a signed graph derived from its underlying graph G.
- The adjacency matrix $A_{\dot{G}}$ of \dot{G} is obtained from the (0, 1)-adjacency matrix of the underlying graph G by reversing the sign of all 1s which correspond to negative edges.
- The Laplacian matrix of \dot{G} is defined by $L_{\dot{G}} = D_{\dot{G}} A_{\dot{G}}$, where $D_{\dot{G}}$ is the diagonal matrix of vertex degrees.
- The eigenvalues and the spectrum of \dot{G} are identified to be the eigenvalues and the spectrum of $A_{\dot{G}}$, while the Laplacian eigenvalues and the Laplacian spectrum of \dot{G} refer to the eigenvalues and the spectrum of $L_{\dot{G}}$.

Switching equivalent signed graphs

- We say that the signed graphs G and H are switching equivalent if there is a vertex subset U ⊆ V(G) such that H is obtained by reversing the sign of every edge with one end in U and the other in V(G) \ U.
- The underlying graphs of switching equivalent signed graphs are isomorphic. If the vertex labelling is transferred from the common underlying graph, then \dot{G} is switching equivalent to \dot{H} if and only if there is a diagonal matrix S of ± 1 s, called the *switching matrix*, such that $A_{\dot{H}} = S^{-1}A_{\dot{G}}S$.
- In this case, we also have $L_{\dot{H}} = S^{-1}L_{\dot{G}}S$. Switching equivalence preserves the spectrum of $A_{\dot{G}}$ and the spectrum of $L_{\dot{G}}$.
- If **x** is an eigenvector of $A_{\dot{G}}$ (or $L_{\dot{G}}$), then S**x** is an eigenvector that corresponds to the same eigenvalue of $A_{\dot{H}}$ (or $L_{\dot{H}}$).

- We say that an eigenvalue of $A_{\dot{G}}$ or $L_{\dot{G}}$ is *main* if the corresponding eigenspace contains an eigenvector that is non-orthogonal to the all-1 vector **j**. For example, for every unsigned graph *G*, zero is the Laplacian eigenvalue associated with **j**, and therefore zero is the main eigenvalue.
- It was proved that for every eigenvalue of a signed graph, there exists a switching equivalent signed graph in which this particular eigenvalue is main.
- Main eigenvalues are important for counting walks as well as for applications in control theory.

- In Akbari et al. conjectured that, apart from K₂ and the graph obtained by deleting an edge of K₄, for every graph G there exists a switching equivalent signed graph G such that all the eigenvalues of A_G are main. In the same reference, the conjecture is confirmed for graphs with at most 9 vertices and also for Cayley graphs, distance-regular graphs, vertex-transitive and edge-transitive graphs, double stars and paths.
- We consider an analogue problem for Laplacian spectrum of signed graphs.

Problem

For a given graph G determine all switching equivalent signed graphs \dot{G} such that all the eigenvalues of $A_{\dot{G}}$ (or $L_{\dot{G}}$) are main.

We use **s** to denote the vector equal to the main diagonal of the switching matrix S. We say that the pair (A_G, \mathbf{s}) (or (L_G, \mathbf{s})) is *mainable* if all the eigenvalues of $S^{-1}A_GS$ (or $S^{-1}L_GS$) are main.

Let G and H be the graphs with Laplacian eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m = 0$ and $\mu_1, \mu_2, \ldots, \mu_n = 0$, respectively. The Laplacian eigenvalues of $G \nabla H$ are m + n, $\lambda_1 + n$, $\lambda_2 + n$, $\ldots, \lambda_{m-1} + n$, $\mu_1 + m$, $\mu_2 + m$, $\ldots, \mu_{n-1} + m$ and 0.

If **x** is a Laplacian eigenvector of *G* orthogonal to **j** with a Laplacian eigenvalue λ , then its extension being zero on each vertex of *H* is a Laplacian eigenvector of $G\nabla H$ with eigenvalue $\lambda + n$, and similarly for the Laplacian eigenvectors of $G\nabla H$ that are formed on the basis of those of *H*. The Laplacian eigenvalue m + n corresponds to the eigenvector with weight *m* on each vertex of *G* and -n on each vertex of *H*.

If G is a graph with $n \ (n \ge 6)$ vertices, then

(i) G realizes $S_{1,n}$ if and only if

(a) $G \cong (2K_1) \nabla (K_1 \cup H)$, for some graph H that realizes $S_{n-4,n-3}$ or

(b) $G \cong K_1 \nabla H$, for some graph H that realizes $S_{n-1,n-1}$;

(ii) G realizes
$$S_{n-1,n}$$
 if and only if

(a) $G \cong K_1 \nabla (K_2 \cup H)$, for some graph H that realizes $S_{2,n-3}$ or

- (b) $G \cong K_1 \nabla (K_1 \cup H)$, for some graph H that realizes $S_{n-2,n-2}$;
- (iii) If $2 \le i \le n-2$, then G realizes $S_{i,n}$ if and only if $G \cong K_1 \nabla (K_1 \cup H)$, for some graph H that realizes $S_{i-1,n-2}$.

$$S_{i,n} = \{0, 1, \ldots, n\} \setminus \{i\}$$

- A *cograph* is a graph that does not contain the 4-vertex path *P*₄ as an induced subgraph.
- A threshold graph does not contain an induced subgraph isomorphic to the two copies of K_2 , or the path P_4 , or the cycle C_4 (we say that a threshold graph is $\{2K_2, P_4, C_4\}$ -free).
- A cograph has the form *G* ∪ *H* or *G*∇*H*, where *G*, *H* are also cographs. It follows that the Laplacian spectrum of a cograph is integral.

Lemma 1

If $G \ncong K_1$ is a cograph without repeated eigenvalues, then either $G \cong K_2$ or G is constructed as in item (i.a), (ii.a) or (iii) of Theorem 2.

Lemma 2

Let G be a cograph that realizes $S_{1,n}$. Then $G \cong K_1$, $G \cong K_2$, $G \cong (2K_1)\nabla(K_1 \cup K_2)$, $G \cong (2K_1)\nabla(K_1 \cup P_3)$ or G is formed by taking a cograph that realizes $S_{1,n-8}$ and applying (iii), (ii.a) and (i.a) of Theorem 2, respectively.

Lemma 3

Let G be a cograph that realizes $S_{n-1,n}$. Then $G \cong K_2$, $G \cong P_3$, $G \cong K_1 \nabla (K_2 \cup P_3)$, $G \cong K_1 \nabla (K_2 \cup K_1 \nabla (K_1 \cup K_2))$ or G is formed by taking a cograph that realizes $S_{n-9,n-8}$ and applying (i.a), (iii) and (ii.a) of Theorem 2, respectively.

Lemma 4

Let G be a cograph that realizes $S_{i,n}$, for $2 \le i \le n-2$. Then G is formed by applying (iii) of Theorem 2 to a cograph that realizes $S_{i-1,n-2}$.

Lemma 5

There is a cograph G that realizes $S_{i,n}$ if and only if

- (i) i = 1 with $n \equiv 1$ or $n \equiv 2 \pmod{4}$ or i = n 1 with $n \equiv 2$ or $n \equiv 3 \pmod{4}$ or,
- (ii) $2 \le i \le n-2$ and either $n \equiv 2i 1$ or $n \equiv 2i \pmod{4}$.

Moreover, in each case, G is uniquely determined by the given spectrum.

Let G be a cograph realizing $S_{1,n}$ which is obtained as in Lemma 2 from a cograph $H \not\cong K_1$ that realizes $S_{1,n-8}$. Let $\mathbf{s} = (s_1, s_2, \ldots, s_n)^T$ be a (1, -1)-vector and $\mathbf{s}' = (s_9, s_{10}, \ldots, s_n)^T$ be the restriction of \mathbf{s} (on H). If (L_H, \mathbf{s}') is mainable, then (L_G, \mathbf{s}) is mainable if and only if $\langle \mathbf{s}, \mathbf{j} \rangle \neq 0$, $s_1 \neq s_2$, $s_5 \neq s_6$, $-\langle \mathbf{s}', \mathbf{j_{n-8}} \rangle \notin \{s_7 + s_8, s_3 + s_4 + s_7 + s_8\}$.

Theorem 4

Let G be a cograph realizing $S_{n-1,n}$ which is obtained as in Lemma 3 from a cograph H that realizes $S_{n-9,n-8}$. Let $\mathbf{s} = (s_1, s_2, \dots, s_n)^T$ be a (1, -1)-vector and $\mathbf{s}' = (s_9, s_{10}, \dots, s_n)^T$ be the restriction of \mathbf{s} . If (L_H, \mathbf{s}') is mainable, then (L_G, \mathbf{s}) is mainable if and only if $\langle \mathbf{s}, \mathbf{j} \rangle \neq 0$, $s_2 \neq s_3$, $s_6 \neq s_7$, $-\langle \mathbf{s}', \mathbf{j_{n-8}} \rangle \notin \{s_8, s_4 + s_5 + s_8\}$.

Mainability of cographs

Theorem 5

Let G be a cograph realizing $S_{i,n}$, for $2 \le i \le n-2$, which is obtained as in Lemma 4 from a cograph H that realizes $S_{i-1,n-2}$. A complete system of linearly independent eigenvectors of G is

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 & -\frac{1}{n-1} \\ \mathbf{j} & \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_{n-3} & -\frac{1}{n-2}\mathbf{j} & -\frac{1}{n-1}\mathbf{j} \end{bmatrix},$$

where $y_1, y_2, \ldots, y_{n-3}$ are linearly independent eigenvectors corresponding to non-zero eigenvalues of H.

Let $\mathbf{s} = (s_1, s_2, \dots, s_n)^{\mathsf{T}}$ be a (1, -1)-vector and $\mathbf{s}' = (s_3, s_4, \dots, s_n)^{\mathsf{T}}$ be the restriction of \mathbf{s} . If (L_H, \mathbf{s}') is mainable, then (L_G, \mathbf{s}) is mainable if and only if $\langle \mathbf{s}, \mathbf{j} \rangle \neq 0$.

A graph G is a threshold graph without repeated eigenvalues if and only if G realizes $S_{i,n}$, where n = 2i - 1 or n = 2i and $i \in \mathbb{N}$. Moreover, with an appropriate vertex labelling, linearly independent eigenvectors of G are given by the columns of

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 & -\frac{1}{n-1} \\ 1 & 0 & 0 & \cdots & 1 & -\frac{1}{n-2} & -\frac{1}{n-1} \\ 1 & 0 & 0 & \cdots & -\frac{1}{n-3} & -\frac{1}{n-2} & -\frac{1}{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & \cdots & -\frac{1}{n-3} & -\frac{1}{n-2} & -\frac{1}{n-1} \\ 1 & 1 & -\frac{1}{2} & \cdots & -\frac{1}{n-3} & -\frac{1}{n-2} & -\frac{1}{n-1} \\ 1 & -1 & -\frac{1}{2} & \cdots & -\frac{1}{n-3} & -\frac{1}{n-2} & -\frac{1}{n-1} \end{bmatrix}.$$

If $\mathbf{s} = (s_1, s_2, \dots, s_n)^{\mathsf{T}}$ is a (1, -1)-vector, then (L_G, \mathbf{s}) is mainable if and only if $\langle \mathbf{s}, \mathbf{j} \rangle \neq 0$ and $s_{n-1} \neq s_n$.

(1)

Let G and H be graphs of order n_1 and n_2 $(n_1, n_2 \ge 2)$.

- Applications in control theory. For a symmetric n × n matrix M and an n × 1 vector b, we say that a pair (M, b) is controllable if every eigenvector of M is non-orthogonal to b. It is known that if M has an eigenvalue of multiplicity at least two, then (M, b) is not controllable for any choice of b.
- There is a particular case when we say that a signed graph G is controllable if A_G has no eigenvector orthogonal to j, and similarly it is called Laplacian controllable if the same holds for the Laplacian matrix L_G instead of A_G. Equivalently, a signed graph is (Laplacian) controllable if all its (Laplacian) eigenvalues are simple and main.

- It can be of the interest to study mainability of some other classes of graphs.
- Mainability regarding the adjacency spectrum.

Some references

- S. Akbari, F.M.C. França, E. Ghasemian, M. Javarsineh, L.S. de Lima, The main eigenvalues of signed graphs, Linear Algebra Appl., 614 (2020), 270–280.
- T. Bıyıkoğlu, S.K. Simić, Z. Stanić, Some notes on spectra of cographs, Ars Combin., 100 (2011), 421–434.
- S.M. Fallat, S.J. Kirkland, J.J. Molitierno, M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, J. Graph Theory, 50 (2005), 162–174.
- R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199 (1994), 381–389.
- R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278 (1998), 221–236.
- Z. Stanić, Main eigenvalues of real symmetric matrices with application to signed graphs, Czechoslovak Math. J., 70 (2020), 1091–1102.

M. Anđelić, T. Koledin, Z. Stanić, *Signed graphs whose all Laplacian eigenvalues are main*, Linear Multilinear Algebra, http://dx.doi.org/10.1080/03081087.2022.2105288.

Thank you!