See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/367077963

Classes of strongly regular signed graphs and their relations with association schemes

Presentation · January 2023

CITATION: 0	5	reads 97	
3 authors:			
Ø	Milica Anđelić Kuwait University 98 PUBLICATIONS 549 CITATIONS	0	Tamara Koledin University of Belgrade 48 PUBLICATIONS 195 CITATIONS
	SEE PROFILE		SEE PROFILE
Ś	Zoran Stanić University of Belgrade 221 PUBLICATIONS 1,273 CITATIONS SEE PROFILE		

Classes of strongly regular signed graphs and their relations with association schemes ICGNC '23

Milica Andjelić, <u>Tamara Koledin</u>, Zoran Stanić

Kuwait University, Kuwait, University of Belgrade, Serbia

This work was partially supported by the Science Fund of the Republic of Serbia; grant number 7749676: Spectrally Constrained Signed Graphs with Applications in Coding Theory and Control Theory – SCSG-ctct.

- G = (V(G), E(G)) a graph; σ: E(G) → {-1, +1}. Then G = (G, σ) is a signed graph derived from its underlying graph G and σ is a sign function or a signature.
- The edge set of a signed graph is composed of subsets of positive and negative edges. They induce the subgraphs denoted by \dot{G}^+ and \dot{G}^- , respectively. Every graph can be interpreted as a signed graph without negative edges.
- A signed graph is said to be *homogeneous* if all edges have the same sign.
- A signed graph is connected, regular or bipartite if the same holds for its underlying graph. A signed graph is *net-regular* if the difference between positive and negative edges incident with a vertex is a constant on the vertex set. This means that the all-ones vector **j** is an eigenvector of its adjacency matrix.

|御を 不通を 不通を

- The $n \times n$ adjacency matrix $A_{\dot{G}}$ of \dot{G} is obtained from the standard (0,1)-adjacency matrix of G by reversing the sign of all 1's which correspond to negative edges. The corresponding eigenvalues are real and form the spectrum of \dot{G} .
- A walk in a signed graph is *positive* if the number of its negative edges (counted with their multiplicity if there are repeated edges) is not odd. Otherwise, it is negative.
- A signed graph is said to be walk-regular if, for each vertex *i*, the difference between the numbers of positive and negative walks starting and terminating at *i*, and traversing *k* edges, is constant for each non-negative integer *k*,

Combinatorial definition

Definition [14]. We say that a signed graph \dot{G} is *strongly regular* (for short, a *SRSG*) whenever it is regular and satisfies the following conditions:

- (1) \dot{G} is neither homogeneous complete or totally disconnected,
- (2) there exists $a \in \mathbb{Z}$ such that $w_2(i,j) = a$, for all $i \stackrel{+}{\sim} j$,
- (3) there exists $b \in \mathbb{Z}$ such that $w_2(i,j) = b$, for all $i \sim j$,
- (4) there exists $c \in \mathbb{Z}$ such that $w_2(i,j) = c$, for all $i \not\sim j$,

where $w_2(i, j)$ is the difference between the numbers of positive and negative walks traversing along 2 edges between the vertices *i* and *j*.

• The numbers (n, r, a, b, c) are called the *parameters of a SRSG*. It might occur that some of them are not unique, i.e. if \dot{G} does not contain any positive edge then a is arbitrary, or if \dot{G} is complete then c is arbitrary.

御下 メヨト メヨト 三日

- If G is inhomogeneous, the parameters a, b are uniquely determined.
- If, in addition, \dot{G} is non-complete then c is fixed, as well.

• Definition written in the matrix form:

$$A_{\dot{G}}^{2} = \frac{a}{2}(A_{\dot{G}} + A_{G}) - \frac{b}{2}(A_{\dot{G}} - A_{G}) + cA_{\overline{G}} + rI, \qquad (1)$$

where r is the vertex degree of \dot{G} , and \overline{G} is the complement of G.

• Important: For homogeneous SRSGs the identity (1) reduces to the well-known matrix identity defining strong regularity.

- d be a positive integer and X a non-empty set.
- A symmetric *d*-class association scheme on X consists of a partition of $X \times X$ into the d + 1 non-empty symmetric binary relations R_0, R_1, \ldots, R_d satisfying the following conditions:
 - $R_0 = \{(x, x) \mid x \in X\},\$
 - if $(x, y) \in R_h$, then the number $z \in X$ such that $(x, z) \in R_i$ and $(y, z) \in R_j$ is a constant p_{ij}^h depending on i, j, h, but not on a choice of x, y.
- The numbers p_{ij}^h are called the *intersection numbers* of the scheme.

Symmetric association schemes – matrix form

- The *i*th binary relation R_i , also known as the *i*th associate class, can be represented by the matrix A_i in the following way:
 - A_i is the (0, 1)-matrix of order |X| whose rows and columns are indexed by the elements of X,
 - $(A_i)_{xy} = 1$ if and only if $(x, y) \in R_i$,
 - $A_0 = I$, $A_i = A_i^{\mathsf{T}}$, $\sum_{h=0}^{d} A_h = J$, $A_i A_j = \sum_{k=0}^{d} p_{ij}^h A_h$.
- Matrices A_i, i ∈ {0,1,...,d} are also known as the adjacency matrices of the association scheme.
- The adjacency matrices generate a (d + 1)-dimensional commutative algebra \mathcal{A} of symmetric matrices, which is called the Bose-Mesner algebra of the scheme.
- A (d + 1)-dimensional commutative algebra of adjacency matrices of a symmetric *d*-class association scheme is closed under ordinary matrix multiplication and under entrywise (Hadamard) multiplication.
- A vector space of symmetric matrices containing the identity matrix *I* and the all-ones matrix *J* that is closed under both ordinary and entrywise (Hadamard) multiplication is the Bose-Mesner algebra of an association scheme Theorem 2.6.1 in [3]

A classification of SRSGs [7]

 C_1 : SRSGs with a = -b, which are either complete or non-complete with $c \neq 0$. The identity (1) reduces to:

$$A_{\dot{G}}^2 + bA_{\dot{G}} = cA_{\overline{G}} + rI.$$

 C_2 : SRSGs with a = -b, which are non-complete with c = 0. It holds:

$$A_{\dot{G}}^2 + bA_{\dot{G}} = rI.$$

 C_3 : SRSGs with $a \neq -b$, which are either complete or non-complete with $c = \frac{a+b}{2}$. It holds:

$$A_{\dot{G}}^2+\frac{b-a}{2}A_{\dot{G}}=\frac{a+b}{2}J+\left(r-\frac{a+b}{2}\right)I.$$

 \mathcal{C}_4 : SRSGs with $a \neq -b$, which are non-complete with c = 0. It holds:

$$A_{\dot{G}}^2+\frac{b-a}{2}A_{\dot{G}}=\frac{a+b}{2}A_G+rI.$$

 C_5 : SRSGs with $a \neq -b$, which are non-complete with $c \neq \frac{a+b}{2}$ and $c \neq 0$. It holds:

$$A_{\dot{G}}^{2} + \frac{b-a}{2}A_{\dot{G}} = \frac{a+b-2c}{2}A_{G} + cJ + (r-c)I$$

Milica Andjelić, <u>Tamara Koledin,</u> Zoran StaniClasses of SRSGs and Their Relations with A 8/25

Class \mathcal{C}_3

• According to our knowledge SRSGs of C_3 are studied only in [7]. They have properties similar to those of strongly regular graphs. We know the following:

Theorem (Koledin, Stanić [7])

If $\dot{G} \in \mathcal{C}_3$, then \dot{G} is net-regular.

Theorem (Koledin, Stanić [7])

If $\dot{G} \in C_3$, then \dot{G} has exactly three eigenvalues, one of them being the net-degree with multiplicity one.

Theorem (Koledin, Stanić [7])

Let \dot{G} be a connected inhomogeneous regular and net-regular signed graph with three eigenvalues. If its net-degree is a simple eigenvalue, then \dot{G} is strongly regular.

・ロン ・御と ・ヨと ・ ヨン

• Also, if $\dot{G} \in C_3$, then \dot{G} is walk-regular [7].

Signed graphs from three class association schemes

- From a given symmetric 3-class association scheme, we can easily construct a SRSG in the following way: any of the relations R_1 , R_2 , R_3 of a scheme can be chosen to represent positive edges, any of the remaining two can be chosen to represent negative ones, and then the remaining relation represents non-edges.
- If we choose R_i to represent positive edges and R_j to represent negative ones, and if A_i and A_j are the the corresponding adjacency matrices of the scheme, then the adjacency matrix of \dot{G} is $A_{\dot{G}} = A_i - A_j$.
- the parameters a, b, c of \dot{G} can be expressed in terms of the intersection numbers in the following way:

$$a = p_{ii}^{i} + p_{jj}^{i} - 2p_{ij}^{i}, \ b = p_{ii}^{j} + p_{jj}^{j} - 2p_{ij}^{j}, \ c = p_{ii}^{k} + p_{jj}^{k} - 2p_{ij}^{k}.$$

化医水 化医水口

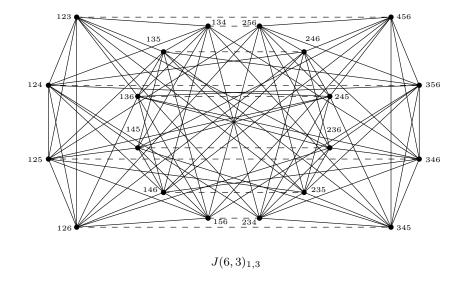
• SRSG constructed in this way is net-regular with net-degree $p_{ii}^0-p_{jj}^0$.

Johnson and Hamming signed graphs – definition [8]

- The *d*-class Johnson scheme J(v, d) is defined on the *d*-subsets of a *v*-set, with $d \leq \frac{v}{2}$. Two *d*-subsets are in relation R_i if and only if they intersect in d i elements.
- J(v, d), $2 \le d \le \frac{v}{2}$ Johnson scheme; A_1, A_2, \ldots, A_d its adjacency matrices. The Johnson signed graph $J(v, d)_{m,n}$, for $1 \le m, n \le d$ and $m \ne n$, is the signed graph determined by the adjacency matrix $A_{J(v,d)_{m,n}} = A_m - A_n$.
- The *d*-class Hamming scheme H(d, q) has the set of all words of length *d* over an alphabet of *q* symbols as its vertex set. Two words are in relation R_i if and only if the Hamming distance between them is *i* (i.e., if and only if they differ in exactly *i* coordinates).
- $H(d, q), d, q \ge 2$ Hamming scheme; A_1, A_2, \ldots, A_d its adjacency matrices. The Hamming signed graph $H(d, q)_{m,n}$, for $1 \le m, n \le d$ and $m \ne n$, is the signed graph determined by the adjacency matrix $A_{H(d,q)_{m,n}} = A_m - A_n$.

▲御屋 ★ 御屋 ★ 御屋 ★ 一番

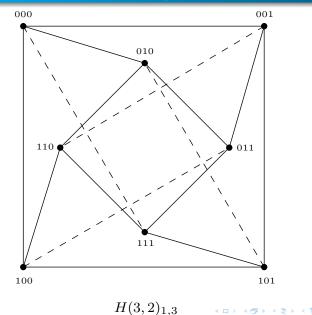
Johnson signed graph $J(6,3)_{1,3}$



イロト 不得 とくほと 不良とう 田

Milica Andjelić, <u>Tamara Koledin,</u> Zoran Stani<mark>Classes of SRSGs and Their Relations with A</mark> 12/25

Hamming signed graph $H(3,2)_{1,3}$



Milica Andjelić, <u>Tamara Koledin,</u> Zoran StaniClasses of SRSGs and Their Relations with A 13/25

Properties of Johnson and Hamming signed graphs

• Some properties of Johnson and Hamming signed graphs (expressions for their eigenvalues, the question of their strong regularity, etc.) can be found in [8].

Non-complete SRSGs of C_3

- Are there non-complete SRSGs in the class C_3 ? Yes!
- The three non-complete SRSGs in the class C₃ we know about are constructed using symmetric association schemes (three class Johnson scemes, or four class Hamming scheme).
- Recall that there is a natural way to construct SRSGs using three class association schemes.
- Examples constructed via three class Johnson schemes: Johnson signed graphs $J(9,3)_{1,2}$ and $J(14,3)_{1,2}$.
- Third example: non-edges are obtained by merging two relations in a four-class Hamming association scheme Hamming signed graph H(4,4)_{1,2}. This merging does not reduce the scheme to a three-class one.
- Questions:
 - Are there more non-complete SRSGs of C_3 that can be constructed in a similar way (by merging classes in a *d*-class association scheme, $d \ge 4$)?
 - If $\dot{G} \in C_3$ is complete then $A_{\dot{G}}$ is the Seidel matrix of a strongly regular graph, so adjacency matrices of \dot{G}^+ and \dot{G}^- commute; the same holds for the three examples of non-complete SRSGs of C_3 ;
 - Can we construct a SRSG \dot{G} of C_3 , such that \dot{G}^+ and \dot{G}^- are regular with non-commuting adjacency matrices?

SRSGs and their relation with association schemes I

• SRSGs with three eigenvalues:

Proposition

If a net-regular SRSG \dot{G} with adjacency matrix $A_{\dot{G}}$ has three eigenvalues and its net-degree is not a simple one, then $\mathcal{A} = \langle A_{\dot{G}}, A_{\dot{G}}^2, I, J \rangle$ is Bose-Mesner algebra of a 3-class association scheme.

- The condition that net-degree is not a simple eigenvalue can not be omitted; the example is the already mentioned $H(4, 4)_{1,2}$.
- The converse also does not hold, i.e. if for a SRSG G with adjacency matrix $A_{\dot{G}}$ and three eigenvalues the vector space $\mathcal{A} = \langle A_{\dot{G}}, A_{\dot{G}}^2, I, J \rangle$ is Bose-Mesner algebra of a 3-class association scheme we can not conclude that its net-degree is not a simple eigenvalue; for example SRSGs $J(9,3)_{1,2}$ and $J(14,3)_{1,2}$ obtained from three class association schemes

医尿道氏试验剂

SRSGs and their relation with association schemes II

• Signed graphs with at most four eigenvalues:

Proposition

Let \dot{G} be an inhomogeneous non-complete signed graph with adjacency matrix $A_{\dot{G}}$. Suppose that vector space $\mathcal{A} = \langle A_{\dot{G}}, A_{\dot{G}}^2, I, J \rangle$ is Bose-Mesner algebra of a 3-class association scheme, i.e. that \mathcal{A} is closed under both ordinary and Hadamard multiplication. Then \dot{G} is net-regular SRSG with at most four (distinct) eigenvalues.

• Again, we can not omit the assumption that G is neither homogeneous nor complete.

• SRSGs with four eigenvalues:

Proposition

If a net-regular SRSG \dot{G} with adjacency matrix $A_{\dot{G}}$ has four eigenvalues and its net-degree is a simple one, then $\mathcal{A} = \langle A_{\dot{G}}, A_{\dot{G}}^2, I, J \rangle$ is Bose-Mesner algebra of a 3-class association scheme. Conversely, if an inhomogeneous non-complete signed graph \dot{G} with adjacency matrix $A_{\dot{G}}$ has four eigenvalues and if $\mathcal{A} = \langle A_{\dot{G}}, A_{\dot{G}}^2, I, J \rangle$ is Bose-Mesner algebra of a 3-class association scheme, then \dot{G} is net-regular SRSG, and its net-degree is a simple eigenvalue.

Walk-regularity I

- Walk-regularity of regular signed graphs:
- Theorem (Anđelić, Koledin, Stanić [2])

A regular signed graph with at most three eigenvalues is walk-regular.

• Walk-regularity of net-regular SRSGs:

Proposition

The following statements hold:

- (i) Every net-regular SRSG with at most 4 eigenvalues is walk-regular;
- (ii) Every net-regular SRSG with at most 5 eigenvalues and whose net-degree is a simple eigenvalue is walk-regular.
 - Walk-regularity of biparite SRSGs:

Proposition

Every bipartite SRSG is walk-regular.

Milica Andjelić, <u>Tamara Koledin,</u> Zoran StaniClasses of SRSGs and Their Relations with A 19/25

• Walk-regularity of SRSGs belonging to certain classes:

Proposition

Every SRSG of $C_2 \cup C_3$ is walk-regular. Let G be a SRSG with exactly 4 eigenvalues.

- (i) If $\dot{G} \in C_1$ and the complement of its underlying graph is connected, then \dot{G} is walk-regular.
- (ii) If \dot{G} is a connected signed graph of C_4 , then \dot{G} is walk-regular.
- (iii) If $\dot{G} \in C_5$ and its parameters satisfy $(a + b 2c)(r \lambda) \neq -2cn$, for every eigenvalue λ of the underlying graph G, then \dot{G} is walk-regular.

ヨト とほう

• Walk-regularity of regular and net-regular signed graphs (but not necessarily strongly regular):

Proposition

The following statements hold:

- (i) Every regular and net-regular signed graph with at most 4 eigenvalues whose net-degree is a simple eigenvalue is walk-regular;
- (ii) Every bipartite regular and net-regular signed graph with at most 6 eigenvalues whose net-degree is a simple eigenvalue is walk-regular.

References |

- L.A. Agong, C. Amarra, J.S. Caughman, A.J. Herman, T.S. Terada, On the girth and diameter of generalized Johnson graphs, Discrete Math., 341 (2018), 138–142.
- [2] M. Anđelić, T. Koledin, Z. Stanić, On regular signed graphs with three eigenvalues, Discuss. Math. Graph Theory, 40 (2020), 405-416.
- [3] A.E. Brouwer, A.M. Cohen, A. Neumaier, *Distance-regular graphs*, Springer, Berlin, 1989.
- [4] C.J. Colbourn, J.H. Dinitz, *Handbook of Combinatorial Designs*, 2nd edition, Chapman and Hall-CRC, 2006.

化原苯化原苯

- [5] E.R. Van Dam, *Three-class association schemes*, Journal of Algebraic Combinatorics, **10** (1999), 69 – 107.
- [6] Y. Hou, Z. Tang, D. Wang, *On signed graphs with just two distinct adjacency eigenvalues*, Discrete Math., **342** (2019), 111615.

References II

- [7] T. Koledin, Z. Stanić, On a class of strongly regular signed graphs, Publ. Math. Debrecen, 97 (2020), 353-365.
- [8] T. Koledin, Z. Stanić, *Notes on Johnson and Hamming signed graphs*, submitted.
- [9] J. McKee, C. Smyth, Integer symmetric matrices having all their eigenvalues in the interval [-2, 2], J. Algebra, **317** (2007), 260–290.
- [10] F. Ramezani, Constructing signed strongly regular graphs via star complement technique, Mathematical Sciences, 12 (2018), 157–161.
- [11] F. Ramezani, Y. Bagheri *Constructing strongly regular signed graphs*, Ars Combin., in press.
- [12] Z. Stanić, A decomposition of signed graphs with two eigenvalues, Filomat, 34 (2020), 1949–1957.

★週 ▶ ★ 国 ▶ ★ 国 ▶ …

[13] Z. Stanić, Notes on exceptional signed graphs, Ars Math. Contemp., 18 (2020), 105–115.

- [14] Z. Stanić, On strongly regular signed graphs, Discrete Appl. Math., 271 (2019), 184-190.
- [15] Z. Stanić, Signed graphs with two eigenvalues and vertex degree five, Ars Math. Contemp., submitted.
- [16] Z. Stanić, Spectra of signed graphs with two eigenvalues, Appl. Math. Comput., 364 (2020), 124627.
- [17] T. Zaslavsky, Matrices in the theory of signed simple graphs, in B.D. Acharya, G.O.H. Katona, J. Nešetřil (Eds.), Advances in Discrete Mathematics and Applications: Mysore 2008, Ramanujan Math. Soc., Mysore, 2010, pp. 207–229.

ヨト とほう

That is all, **T H X!**

▲ロト ▲週ト そほト そほ♪

38

Milica Andjelić, <u>Tamara Koledin</u>, Zoran Stani Classes of SRSGs and Their Relations with A 25/25