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Abstract: In this article, we consider the relationships between walks in a signed graph G˙ and its eigenvalues,
with a particular focus on the largest absolute value of its eigenvalues ( )ρ G˙ , known as the spectral radius.
Among other results, we derive a sequence of lower bounds for ( )ρ G˙ expressed in terms of walks or closed
walks. We also prove that ( )ρ G˙ attains the spectral radius of the underlying graph G if and only if G˙ is
switching equivalent to G or its negation. It is proved that the length k of the shortest negative cycle in G˙

and the number of such cycles are determined by the spectrum of G˙ and the spectrum of G. Finally, a relation
between k and characteristic polynomials of G˙ and G is established.
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1 Introduction

A signed graph G˙ is an ordered pair ( )G σ, , where ( )=G V E, is an ordinary graph, also known as the under-
lying graph, and { }⟶ − +σ E: 1, 1 is the sign function or the signature. The order n is the number of vertices
of G˙ .

The adjacency matrix AG˙ of G˙ has +1 or −1 for adjacent vertices, depending on the sign of the connecting
edge. According to this concept, an ordinary graph is interpreted as a signed graph without negative edges. The
eigenvalues λ λ λ, ,…, n1 2

of G˙ are the eigenvalues of AG˙ , and they comprise the spectrum of G˙ . Here, we do not
presume any ordering of the eigenvalues, but we use ρ (or ( )ρ G˙ ) to denote the largest absolute value of the
eigenvalues, also known as the spectral radius of G˙ .

A walk in G˙ is a sequence of vertices u u u, ,…, k1 2

such that ui and +ui 1

are joined by a positive or a negative
edge, for ≤ ≤ −i k1 1. It is closed if =u uk1

. The length of a walk is the number of the corresponding edges. We
say that a walk is positive if the product of its edge signs is 1; otherwise, it is negative. A cycle in a signed graph
can be considered as a particular walk, with the same meaning of the notions positive and negative.
Throughout this study, we denote by Wk (resp. Wk

c) the difference between the number of positive and the
number of negative walks (closed walks) of length k in G˙ .

We say that signed graphs are switching equivalent if they share the same vertex set V and there is a
subset ⊆U V such that one of them is obtained by taking the other and reversing the sign of every edge with
one end inU and the other end in ⧹V U . We say that they switch to each other. Switching equivalence is one of
the fundamental concepts in the theory of signed graphs, with a particular significance in the context of
spectral considerations, as switching equivalent signed graphs share the same spectrum [1]. A signed graph is
balanced if every cycle in it, if any, is positive. Equivalently, it is balanced if and only if it switches to its
underlying graph.

The negation −G˙ of G˙ is obtained by reversing the sign of every edge of G˙ . Obviously, ( ) ( )= −ρ G ρ G˙ ˙ .
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In this study, we are interested in relationships between walks and eigenvalues ofG˙ . A particular attention
is devoted to the lower bounds for ( )ρ G˙ expressed in terms of walks of an arbitrary length or closed walks of a
particular length. Signed graphs and their eigenvalues have received a great deal of attention in the recent
past, but lower bounds for the spectral radius are rarely considered. Therefore, our results are mainly related
to the lower bounds for the spectral radius of (ordinary) graphs, and some of them can be found in [2–8].
Needless to say, every lower bound for ( )ρ G˙ remains valid if G˙ reduces to a graph.

We also prove that ( ) ( )≤ρ G ρ G˙ , along with the equality if and only if G˙ switches to G or −G or, if G is
bipartite, to both. This result is an extension of a simple spectral criterion of [9] that decides whether a signed
graph is balanced; accordingly, this occurs if and only if its largest eigenvalue coincides with the largest
eigenvalue of G.

We consider closed walks in G˙ and G to prove that the length k of the shortest negative cycle in G˙ and the
number of such cycles are determined by the spectra of G˙ and G. A relation between k and characteristic
polynomials of G˙ and G is established.

Section 2 is devoted to preliminaries. Lower bounds for ( )ρ G˙ are considered in Section 3. Relationships
between ( )ρ G˙ and ( )ρ G are given in Section 4. Section 5 contains the aforementioned results on the shortest
negative cycles, along with some consequences.

2 Preliminaries

We write m for the number of edges and di for the degree of a vertex i. An eigenvalue λ of G˙ is main if there is
an associated eigenvector not orthogonal to the all-1 vector j. In the entire study, “a cycle in a signed graph”
means a (not necessarily induced) subgraph isomorphic to a signed cycle. A cycle of length 3 (resp. 4, 5) is called
a triangle (a quadrangle, a pentagon). We say that a walk in a signed graph is degenerated if it does not pass
any cycle. Such a walk is illustrated in Figure 1(d).

If x x x, ,…, n1 2

is a complete system of the orthogonal unit eigenvectors belonging to the spectrum
{ }λ λ λ, , …, n1 2

of G˙ , let ( ∣ ∣ ∣ ) ( )= ⋯ =X xx x xn ij1 2

and ( ) ( )= =λ λ λ δ λΛ diag , , …, n ij i1 2

. The latter one is the diagonal
matrix with eigenvalues sorted on the main diagonal. It is known that = ⊺A X XΛG˙ . In fact, this decomposition,
known as the eigenvalue decomposition, holds for every symmetric matrix, cf. [10, p. 11]. Consequently, every
signed graph is uniquely determined by its eigenvalues and a basis of the corresponding eigenvectors.

Next, since the eigenvectors are mutually orthogonal, it holds =⊺ −X X 1, which gives ( )= =⊺ ⊺A X X X XΛ Λ

G

k k k
˙

.

Thus, the ( )i j, -entry aij

k of A
G

k
˙

is expressed as ℓ ℓ ℓ ℓ= ∑ =a x x λij

k n

i j
k

1

. Since this entry counts the difference between
the number of positive walks and the number of negative walks of length k starting at i and terminating at j , we
obtain that the difference between the number of positive walks and the number of negative walks of length k in
G˙ is

Figure 1: Examples of closed walks of length six: (a) along a hexagon, (b) along two triangles, (c) along an edge and a quadrangle, and
(d) along three edges.
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ℓ

ℓ ℓ∑=
=

W c λ ,k

n

k

1

where ( )ℓ ℓ= ∑ =c xi

n

i
1

2 (the square of the entry sum of ℓx ).
If we restrict ourselves to closed walks of length k , then we have

ℓ
ℓ∑=

=
W λ ,k

c

n

k

1

as follows by taking into account that ℓ ℓ ℓ ℓ
∑ == x λ λ

n

i

k k

1

2 , since ℓx is unit.
Observe that, unless G˙ is edgeless, for k even both Wk and Wk

c are positive.

3 Lower bounds for (( ))ρ Ġ

The first result can be considered as a “signed” counterpart to a result obtained by Nikiforov [5].

Theorem 3.1. For a positive integer k, a positive even integer ℓ, and the spectral radius ρ of a signed graphG˙ , the
inequality

ℓ

ℓ

≥ +
ρ

W

W

k k (1)

holds, along with the equality if the main eigenvalues of G˙ belong to { }−ρ ρ, , 0 (resp. { }ρ, 0 ) for k even (odd).

Proof. Following [5], we compute

ℓ

ℓ

ℓ

ℓ=
∑ ⎛

⎝
⎞
⎠

∑ ⎛
⎝

⎞
⎠

+
=

+

=

W

W
ρ

c

c

,

k k

i

n

i

λ

ρ

k

i

n

i

λ

ρ

1

1

i

i

where ci is the square of the entry sum of a unit eigenvector associated with λi, as defined in Section 2. Since

∣ ∣≥ρ λi holds for every i, and ℓ is even, we have
ℓ ℓ⎛

⎝
⎞
⎠ ≤ ⎛

⎝
⎞
⎠

+
λ

ρ

k
λ

ρ

i i , giving

ℓ ℓ

∑ ∑⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

≤ ⎛
⎝

⎞
⎠=

+

=
c

λ

ρ
c

λ

ρ
,

i

n

i

i

k

i

n

i

i

1 1

(2)

which leads to the desired inequality.
Consider the equality. If λi is a non-main eigenvalue, then =c 0i . In addition, if ≠λ 0i is main, then,

according to the statement assumptions, we have
ℓ ℓ⎛

⎝
⎞
⎠ = ⎛

⎝
⎞
⎠ =

+
1

λ

ρ

k
λ

ρ

i i , which together with the previous observa-

tion gives the equality in (2), and this one yields the equality in (1). □

A closer description of signed graphs that attain the equality in the previous statement remains open. We
note that, in the particular case of graphs, it is completely resolved in [5]. Considering signed graphs, one may
observe that for k even the equality holds for every signed graph having a symmetric spectrum (with respect
to the origin) of at most three distinct eigenvalues. Indeed, if it has only two eigenvalues, then they are ρ and
−ρ, and we have the equality in (2), and consequently in (1). If there are three eigenvalues, then they are −ρ ρ, ,
and 0, along with the same conclusion.

We have mentioned in the previous section that switching equivalent signed graphs share the same
eigenvalues; in particular, they share a common spectral radius. On the other hand, a positive non-closed
walk in a signed graph may become negative in transfer to a switching equivalent signed graph. This means
that the lower bound of Theorem 3.1 is not a constant in a switching equivalence class. For this reason, in the
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context of signed graphs, closed walks are more interesting. Although we believe that the following result is
known (and can be found in the literature), for the sake of completeness, we provide a short proof.

Lemma 3.2. A closed walk in a signed graph is positive if and only if it is positive in every switching equivalent
signed graph.

Proof. Observe that a walk of length k is one of the following types: (i) passing along a cycle of length k , (ii) passing
along at least one cycle whose length is less than k , or (iii) does not pass any cycle (i.e., it is degenerated). Examples are
illustrated in Figure 1. It is known that a cycle in a signed graph has the same sign in every switching [1]. This means
that everywalk of type (i) or (ii) does not change the sign, since every edge outside a cycle is passed an even number of
times. For the same reason, a walk of type (iii) does not change its sign, neither. The proof is completed. □

We proceed with a lower bound based on closed walks.

Theorem 3.3. For a positive integer k, a positive even integer ℓ, and the spectral radius ρ of a signed graphG˙ , the
inequality

ℓ

ℓ

≥ +
ρ

W

W

k k

c

c
(3)

holds. Equality is attained if and only if G˙ is edgeless or k is even and the spectrum of G˙ is symmetric of at most
three distinct eigenvalues.

Proof. The inequality is proved as in the proof of Theorem 3.1, with =c 1i for all i.
If the equality holds, then we have the equality in (2) (again, with =c 1i ), which gives

ℓ

∑⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜
⎛
⎝

⎞
⎠

−
⎞

⎠
⎟ =

=

λ

ρ

λ

ρ
1 0.

i

n

i i

k

1

Since ℓ is even and − ≤ ≤1 1

λ

ρ

i , the previous sum is negative whenever k is odd and G˙ has at least one edge, as
in this case G˙ has at least one negative eigenvalue. For k even, the sum is negative if at least one eigenvalue
does not belong to { }−ρ ρ, , 0 . Otherwise, the equality is attained and the corresponding spectrum must be
symmetric (as the sum of eigenvalues is zero).

The opposite implication follows directly. □

In light of Lemma 3.2, the right-hand side of (3) is the same for every switching of G˙ . We continue with
some consequences.

Corollary 3.4. For the spectral radius ρ of a signed graph G˙ ,

≥ρ
T

m

3 (4)

and

( ( ))
≥

+ ∑ −=
ρ

Q d d

m

8 2 1

2

i

n

i i
2

1 (5)

hold true, where T (resp. Q) denotes the difference between the number of positive and the number of negative
triangles (quadrangles) in G˙ .

Proof. Inequality (4) follows by setting =k 1 and ℓ = 2 in Theorem 3.3, as =W T6

c

3

and =W m2

c

2

. For the first
identity, observe that every closed walk of length 3 traverses along a triangle; it may pass it in two different
directions and can start at any of its vertices.
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Inequality (5) follows by setting =k 2 and ℓ = 2. Indeed, as mentioned earlier, we obtain that the differ-
ence between positive and negative closed walks along a quadrangle is Q8 . The remaining closed walks are
positive since each of them makes even passings along any edge. Accordingly, ∑ = di

n

i1

2 counts the number of
such walks passing along two (not necessarily distinct) edges incident with a starting vertex i, and ( )∑ −= d d 1i

n

i i
1

counts the number of such walks passing along a path of length two with i in the role of its middle vertex. □

Inequality (4) is attained if and only if G˙ has no edges. The latter inequality is attained according to
Theorem 3.3. We note that (4) has a simple expression, but is never finer than (5). To see this, observe that the

right-hand side of the former inequality is ∑
∑

=

=

λ

λ

i

n

i

i

n

i

1

3

1

2

, while for the latter inequality, it is ∑
∑

=

=

λ

λ

i

n

i

i

n

i

1

4

1

2

. Now, by using the

Cauchy-Schwarz inequality, we obtain
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i
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n
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i
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i
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1
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2

1

2

1

4

giving
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⎞
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≤
∑
∑

=

=

=

=

λ

λ

λ

λ
,

i

n

i

i

n

i

i

n

i

i

n

i

1

3

1

2

2

1

4

1

2

which leads to the desired conclusion.

Corollary 3.5. For the spectral radius ρ of a regular signed graph G˙ with vertex degree r ,

( ( ) )

( )
≥

+ −
+ −

ρ
P r T

Q m r

5 3 1

4 1

(6)

and

( ( ) )
≥

+ −
ρ

P r T

m

5 3 1

3 (7)

hold true, where P denotes the difference between the number of positive and the number of negative pentagons
in G˙ , and the remaining parameters have the meaning as in the previous corollary.

Proof. We again refer to Theorem 3.3. Since =W m2

c

2

and ( )= + −W Q m r8 2 1

c

4

(see the proof of the previous
corollary), it remains to show that ( ( ) )= + −W P r T10 3 1

c

5

.
The difference between positive and negative closed walks along a pentagon is P10 . The remaining ones

pass along a triangle. It is not difficult to see that there are exactly 30 closed walks whose all edges belong to a
fixed triangle and another 30 that pass along a triangle and an edge attached at one of its vertices. Since there
are −r 2 edges attached at each vertex, this gives ( )−r30 2 such walks. Summing over all triangles, we obtain
the assertion. □

It is not difficult to see that the lower bounds of the previous corollary are incomparable. For example, for
a positive pentagon, (6) gives ≥ ∕ρ 1 3 and (7) gives ≥ρ 1. For a balanced complete signed graph with five
vertices, (6) gives ≥ρ 3.9231 and (7) gives ≥ρ 3.7084.

4 Spectral radii of Ġ and G

We recall the reader that a signed graph is homogeneous if its signature is either all-positive or all-negative.

Theorem 4.1. For a connected signed graphG˙ , it holds ( ) ( )≤ρ G ρ G˙ ,with equality if and only ifG˙ switches toG or
−G or, if G is bipartite, to both.
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Proof. Let λ be an eigenvalue of G˙ such that ( )=λ ρ G˙ , and let ( )= ⊺x x xx , , …, n1 2

be an associated unit eigen-

vector. We also denote by ( )= ⊺y y yy , , …,

n1 2

a non-negative unit eigenvector associated with ( )ρ G . If
+
~ (resp.

−
~)

stands between vertices joined by a positive (negative) edge, then we compute

( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )∑ ∑ ∑ ∑ ∑ ∑= = − ≤
⎛

⎝
⎜ +

⎞

⎠
⎟ ≤

⎛

⎝
⎜ +

⎞

⎠
⎟ =

+ − + − + −
ρ G λ x x x x x x x x y y y y ρ G˙

2 2 2 ,

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

~

~

~

~

~

~

(8)

which proves the inequality.
If ( ) ( )=ρ G ρ G˙ , all the inequalities in the aforementioned chain become equalities. The last of them yields

that ∣ ∣x is an eigenvector for ( )ρ G , and this means that ≠x 0i holds for ≤ ≤i n1 . By making a switch with
respect to the set of vertices that correspond to negative coordinates of x, we arrive at a switching of G˙ , say H˙ ,
such that ∣ ∣x is associated with ( )ρ H˙ . The first inequality of (8) yields that H˙ is homogeneous, and therefore
isomorphic to G or −G. Finally, it is known that G switches to its negation if and only if it is bipartite. (To see
this, it is sufficient to observe that a cycle in G is positive in −G if and only if it is even.) Thus, if G is bipartite
and ( ) ( )=ρ G ρ G˙ , then G˙ switches to both G and −G.

The opposite implication is obvious. □

Remark 4.2. A referee has observed that the previous result is a consequence of [11, Theorem 4.8], since a
signed graph can be seen as a quaternion unit gain graph.

Note that, for k even, we have

( )

( )

( )

( )

( )

( )

⎟⎜=
∑
∑ =

⎛
⎝

⎞
⎠
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⎞
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∑ ⎛
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⎞
⎠

=

=

=

=

W G

W G

μ

λ

ρ G

ρ G˙ ˙

.

k

k

i

n

i

k

i

n

i

k

k i

n μ

ρ G

k

i

n λ

ρ G

k

1

1

1

1

i

i

Thus, ( )

( )

W G

W G˙

k

k

tends to ( ( ))

( ( ))

⎛
⎝

⎞
⎠

ρ G

ρ G

k
mult

mult

˙

when k tends to infinity, where ( )⋅mult denotes the multiplicity. In addition, ifG

is connected, then ( ( )) =ρ Gmult 1, unless G is bipartite when it is 2.

5 Closed walks and the shortest negative cycle in Ġ

The length of the shortest negative cycle in a signed graph G˙ and the number of such cycles are determined by
the spectrum of G˙ and the spectrum of its underlying graph G.

Theorem 5.1. For an unbalanced signed graph G˙ and its underlying graph G, the length of the shortest negative

cycle of G˙ is equal to the least integer k for which ( ) ( )− ≠W G W G˙ 0k

c

k

c . The number of such cycles is ( ) ( )−W G W G

k

˙

4

k
c

k
c

.

Proof. Let k be an integer such that ( ) ( )− ≠W G W G˙ 0k

c

k

c and ( ) ( )ℓ ℓ− =W G W G˙ 0

c c for every ℓ < k . Observe that
( ) ( )ℓ ℓ−W G W G˙

c c is twice the number of negative closed walks of length ℓ in G˙ . Since this number is zero, there
are no negative closed walks along ℓ edges; in particular, there are no negative cycles of length ℓ.

Unless it passes a cycle of length k , every walk of length k is positive. Indeed, it is either degenerated (and
so, positive) or contains cycles whose lengths are less than k (and again positive, by the previous conclusion). It
follows that there exists at least one negative cycle of length k . Moreover, if s is the number of such cycles, then

( ) ( )− =W G W G sk˙

4k

c

k

c , and we are done. □
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In other words, the number of the shortest negative cycles is
∑ − ∑= =μ λ

k4

i

n

i

k
i

n

i
k

1 1 , where k is as in the formulation

of the previous statement, and λ λ λ, ,…, n1 2

and μ μ μ, ,…,

n1 2

are the eigenvalues of G˙ and G, respectively.
It is worthwhile to add that ( ) ( )− = −W G W G T˙

12

c c

3 3

( −T is the number of negative triangles in G˙ ),
( ) ( )− = −W G W G Q˙

16

c c

4 4

, and, if G is regular of degree r , ( ) ( ) ( ( ) )− = + −− −W G W G P r T˙

20 3 1

c c

5 5

. Accordingly,
spectra of G˙ and G provide the number of negative triangles −T , negative quadrangles −Q , and negative
pentagons −P in G˙ .

We write

( ) ( ) ( )= + + ⋯+ +−
−x a G x a G x a GΦ

˙ ˙ ˙

G
n

n
n

˙

1

1

1 0

for the characteristic polynomial (of the adjacency matrix) of a signed graph G˙ .

Theorem 5.2. The length of the shortest negative cycle in an unbalanced signed graph G˙ is k if and only if
( ) ( )ℓ ℓ=− −a G a G˙

n n holds for ℓ≤ < k1 ,with ( ) ( )≠− −a G a G˙

n k n k . In this case,G˙ andG share at most −n k common
eigenvalues (taken with their multiplicities).

Proof. Let λ λ λ, ,…, n1 2

and μ μ μ, ,…,

n1 2

be the eigenvalues ofG˙ andG, respectively. As mentioned previously, we
denote ( )ℓ

ℓ= ∑ =W G λ˙

c

i

n

i1

and ( )ℓ
ℓ= ∑ =W G μ

c

i

n

i1

.

We know from the matrix algebra that ( ) ( ) ( )ℓ
ℓ

ℓ= −−a G e λ λ λ˙

1 , , …,n n1 2

, where ℓe is the elementary sym-
metric polynomial (i.e., the sum of all distinct products of ℓ distinct variables), and similarly for ( )ℓ−a Gn .

Newton’s identity states that:

ℓ ( ) ( ) ( ) ( )ℓ

ℓ

ℓ∑= −
=

−
−e λ λ λ e λ λ λ W G, , …, 1 , , …,

˙

n

i

i
i n i

c
1 2

1

1

1 2

(9)

and similarly for G.
If k is the length of the shortest negative cycle, then by Theorem 5.1, ( ) ( )ℓ ℓ=W G W G˙

c c , for ℓ < k and
( ) ( )≠W G W G˙

k

c

k

c . A successive application of (9) gives

( ) ( ) ( ) ( ) ( ) ( )ℓ
ℓ

ℓ
ℓ

ℓ ℓ= − = − =− −a G e λ λ λ e μ μ μ a G˙

1 , , …, 1 , , …, ,n n n n1 2

1 2

for ℓ < k and ( ) ( )≠− −a G a G˙

n k n k .
Assume now that ( ) ( )ℓ ℓ=− −a G a G˙

n n holds for ℓ≤ < k1 . We need to show that ( ) ( )=W G W G˙

i

c

i

c holds for
<i k . We use the induction argument. First, ( ) ( )=− −a G a G˙

n n1 1

gives ( ) ( )=e λ λ λ e μ μ μ, , …, , , …,n n1 1 2 1

1 2

, which
implies

( ) ( ) ( ) ( )=e λ λ λ W G e μ μ μ W G, , …,

˙

, , …, ,n
c

n

c
0 1 2

1
0

1 2
1

i.e., ( ) ( )=W G W G˙

c c

1 1

as =e 1

0

. Suppose that ( ) ( )=W G W G˙

i

c

i

c holds for < −i k 1.
By the statement assumption, we have

( ) ( ) ( ) ( ) ( ) ( ) ℓℓ
ℓ

ℓ
ℓ

ℓ ℓ= − = − = ≤− −e λ λ λ a G a G e μ μ μ k, , …, 1

˙

1 , , …, , for .n n n n1 2

1 2

(10)

Together with the induction hypothesis and identity (9), this implies ( ) ( )=− −W G W G˙

k

c

k

c

1 1

. It remains to show
that ( ) ( )≠W G W G˙

k

c

k

c . From ( ) ( )≠− −a G a G˙

n k n k , we obtain

( ) ( ) ( ) ( ) ( ) ( )∑ ∑− ≠ −
=

−
−

=

−
−e λ λ λ W G e μ μ μ W G1 , , …,

˙

1 , , …, ,

i

k

i
k i n i

c

i

k

i
k i n i

c

1

1

1 2

1

1

1 2

i.e.,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∑

∑

− + −

≠ − + −

−

=

−
−

− −

−

=

−
−

− −

e λ λ λ W G e λ λ λ W G

e μ μ μ W G e μ μ μ W G

1 , , …,

˙

1 , , …,

˙

1 , , …, 1 , , …, ,

k
n k

c

i

k

i
k i n i

c

k

n k

c

i

k

i
k i n i

c

1

0 1 2

1

1

1

1 1 2

1

0

1 2

1

1

1

1

1 2

which, together with (10) and ( ) ( )= ≤ ≤ −W G W G i k˙

, 1 1i

c

i

c , leads to the desired result.
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Finally, assume that G˙ and G have exactly s common eigenvalues, along with > −s n k . Then, the differ-
ence ( ) ( )−x xΦ ΦG G˙

is a polynomial of degree at least s. Indeed, it is equal to ( ) ( )(∑ − )= x λ g xi

s

i
1

, where λi’s are
the common eigenvalues and g is a polynomial in x . In addition, since G˙ is unbalanced, it does not share the
entire spectrum with G, which means that ( ) ≠g x 0. On the other hand, the assumption ( ) ( )ℓ ℓ= ≤− −a G a G˙

, 1n n

ℓ ( ) ( )< ≠− −k a G a G,

˙

n k n k , implies that ( ) ( )−x xΦ ΦG G˙
is a polynomial of degree −n k , and so we have estab-

lished a contradiction, which concludes the entire proof. □

We conclude this section by a simple combinatorial criterion for two signed graphs with a common
underlying graph to have the same spectrum.

Proposition 5.3. Let G˙
1

and G˙
2

be signed graphs sharing the common underlying graph. Then, G˙
1

and G˙
2

share
the same spectrum if and only if they have equal number of non-degenerated positive closed walks of length k ,
for ≤ ≤k n3 .

Proof. Observe that since G˙
1

and G˙
2

have the same underlying graph, they share the same number of all
(positive and negative) closed walks of length k and the same number of degenerated closed walks of length k ,
for every k .

If G˙
1

and G˙
2

share the same spectrum, then ( ) ( )=W G W G˙ ˙

k

c

k

c
1 2

holds for every k . In other words, the
difference between the number of positive and the number of negative closed walks of length k in G˙

1

is equal
to the same difference in G˙

2

. Together with the initial observations, this gives the desired assertion.
If G˙

1

and G˙
2

have equal number of non-degenerated positive closed walks of length k , for ≤ ≤k n3 , it
follows that ( ) ( )=W G W G˙ ˙

k

c

k

c
1 2

. We also have ( ) ( )= =W G W G˙ ˙

0

c c

1
1

1
2

and ( ) ( )= =W G W G m˙ ˙

2

c c

2
1

2
2

. Together with
(9), this yields ( ) ( )=a G a G˙ ˙

k k1 2

for ≤ ≤k n1 , and we are done. □
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