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SPECTRA OF SUBDIVISIONS OF SIGNED GRAPHS,

SIGNED R-GRAPHS AND RELATED PRODUCTS

MIR RIYAZ UL RASHID, S. PIRZADA, TAHIR SHAMSHER, AND ZORAN STANIĆ

Abstract. The subdivision is a bipartite graph built from an ordinary graph

by inserting a vertex into every edge, and an R-graph is obtained by adding

a new vertex to every edge and joining it to the ends of the corresponding
edge. In this paper we deal with similar constructions for signed graphs.

Both are stable under switching, and the question on balance is completely

resolved. In the regular case, the spectrum of the adjacency matrix of signed
R-graph is computed. We also introduce two corona-like products based on the

subdivision of a signed graph and four similar products based on the signed R-

graph operation. For each of them we compute the characteristic polynomial
along with the spectrum of the adjacency matrix and the spectrum of the

Laplacian matrix either in general case or in case when one constituent is just

regular or simultaneously regular and net-regular. In addition, we consider an
other operation, called the generalized subdivision, introduced in [Ars Math.

Contemp. 23 (2023), 3–9] and compute the spectrum of its adjacency matrix
in terms of the Laplacian spectrum of the corresponding signed graph. In this

way, we positively address a problem posed in the same reference. Our results

can be interesting in the context of signed graphs sharing the same spectrum,
since they provide constructions of such signed graphs in case of the ordinary

spectrum as well as in case of the Laplacian spectrum.

1. Introduction

A signed graph Σ is a pair (G, σ) where G = (V,E) is an unoriented connected
graph without loops or multiple edges, also known as the underlying graph, and
σ : E(G) −→ {1,−1} is the sign function (or the signature). We interchangeably
use V (G) and V (Σ) to denote the vertex set of Σ. The edge set of a signed
graph is composed of positive and negative edges. An ordinary (unsigned) graph
is interpreted as a signed graph with all-positive signature.

The adjacency matrix A(Σ) = (aij) is obtained from the standard adjacency
matrix of the underlying graph G by reversing the sign of every entry that corre-
sponds to a negative edge. The characteristic polynomial and eigenvalues of Σ are
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the characteristic polynomial and the eigenvalues of A(Σ). The eigenvalues form
the spectrum of Σ. The Laplacian matrix of Σ is L(Σ) = DG − A(Σ) where DG

is the diagonal matrix of vertex degrees of G. The Laplacian characteristic poly-
nomial, the Laplacian eigenvalues and the Laplacian spectrum of Σ correspond to
the same objects related to L(Σ). We use ϕΣ and λ1, λ2, . . . , λn (resp. ψΣ(x) and
µ1, µ2, . . . , µn) to denote the characteristic polynomial and the eigenvalues (Lapla-
cian characteristic polynomial and the Laplacian eigenvalues) of Σ, respectively. It
is assumed that the eigenvalues are indexed non-increasingly.

Many notions about unsigned graphs extend directly to signed graphs. For
example, a signed graph is connected, regular or bipartite, if the same holds for
its underlying graph. The vertex degree in a signed graph is its degree in the
underlying graph. However, some notions are reserved for signed graphs. The net
degree d±Σ(vi) of a vertex v is the difference between the number of positive and
the number of negative edges incident with v in Σ. We say that Σ is s-net-regular
if d±Σ(v) = s, for all v ∈ V (Σ). Similarly, Σ is co-regular if the underlying graph is
r-regular and Σ is s-net-regular [8]. (We note in passing that a net-regular signed
graph does not need to be regular.) A class of such signed graphs is denoted by
(r, s). The sign of a cycle is the product of signs of its edges, and a signed cycle is
positive (resp. negative) if its sign is 1 (resp. −1).

A fundamental concept in the theory of signed graphs is the switching equiv-
alence: If U is a subset of the vertex set of Σ, let ΣU denote the signed graph
obtained by reversing the sign of every edge with one end in U and the other
in V (Σ) \ U . Then ΣU is switching equivalent to Σ. We use to say that Σ and
ΣU switch to each other. In matrix terminology, the signed graphs Σ and Σ′ are
switching equivalent if there exists a diagonal matrix X with ±1 on the main di-
agonal such that A(Σ′) = X−1A(Σ)X. It follows that switching is an equivalence
relation that preserves the spectrum of the adjacency matrix and the spectrum of
the Laplacian matrix. We say that two signed graphs are switching isomorphic
if one of them is isomorphic to a switching of the other one. Two signed graphs
are cospectral (resp. Laplacian cospectral) if they are not switching isomorphic but
share the same spectrum (Laplacian spectrum).

An other fundamental concept is balance: A signed graph or its subgraph is
balanced if every cycle in it, if any, is positive; otherwise, it is unbalanced. It is
not difficult to see that each cycle in Σ maintains its sign after switching. Con-
sequently, a signed graph is balanced if and only if it switches to its underlying
graph [17]. A simple spectral criterion states that a signed graph is balanced if
and only if its largest eigenvalue (resp. least Laplacian eigenvalue) is equal to the
largest eigenvalue of its underlying graph (equal to zero) [14, 18].

There are many operations on ordinary graphs, and for a survey we refer the
reader to [1, 2, 5]. Some of them are transferred to signed graphs; for example, there
are two parallel definitions of a signed line graph [4, 18], and there is a definition
of a total graph of a signed graph [4] (not quoted in this paper).

In this paper we are interested in the following two graph operations: The
subdivision S(G) of an ordinary graphG is the bipartite graph obtained by inserting
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a new vertex onto every edge of G. Similarly, the R-graph is obtained by adding
a new vertex corresponding to each edge of G and joining each new vertex to the
ends of the corresponding edge [5]. The authors of [3] introduced the notion of a
subdivision of a signed graph, and in this paper we do the same for the signed R-
graph (for short, the SR-graph). These definitions require additional notions, and
thus they are given later in Section 3. Neither of them generalizes the corresponding
definition of an ordinary graph (and the same holds for the foregoing signed line
graph and total graphs of signed graphs). The latter is expected due to the nature of
signed graphs, and a more significant is the fact that all definitions are stable under
the switching equivalence (in the sense that switching equivalent signed graphs
produce switching equivalent subdivisions or SR-graphs), and that the question
on balance of the resulting signed graph is completely resolved. In other words,
the definitions nicely fit into both aforementioned fundamental concepts. With
certain modifications, the same definitions can be generalized to graphs posing
orientations, multiple edges or self-loops. However, the idea in this paper is to
establish the concept in the basic environment.

The spectrum of the subdivision of a signed graph is computed in [3], and here
we compute the spectrum of the SR-graph of a regular signed graph. We also
introduce two signed graph products defined on the basis of subdivisions, as well
as four products defined on the basis of SR-graphs. All products are corona-like,
in the sense that they include a fixed copy of a signed graph, say Σ, and a set
of disjoint copies of an other signed graph where this set is in bijection with the
set of either vertices or edges of Σ. These two signed graphs are referred to as
the constituents of the corresponding product. For definition of corona product of
ordinary graphs, see [1]. We compute the spectral parameters (the characteristic
polynomial, the spectrum, the Laplacian characteristic polynomial spectrum and
the Laplacian spectrum) for each of them either in general case or in case in which
one of constituents is regular or co-regular. We also consider an other subdivision-
based operation introduced in [13], and compute its spectrum in terms of the
Laplacian spectrum of the corresponding signed graph. In this way, we positively
address a research problem posed in the same reference.

Our results can be interesting in the context of cospectral or Laplacian cospectral
signed graphs, as they provide constructions of such signed graphs. Concerning
related results, they are often meet in the framework of ordinary graphs; see [1]
(for spectra of many graph products) [5] (for a distinguishable number of classical
results concerning graph compositions and their spectra), [11] (for spectra of graph
products based on R-graphs) or [2, 7, 10, 12] (for spectra of corona-like products of
graphs). Some products of signed graphs and their spectra can be found in [6, 13].

Here is the content of the remaining sections. Section 2 is preparatory. Def-
initions of a subdivision and an SR-graph are given in Section 3. This section
also contains a discussion on balance and the proof that the SR-graph operation
is stable under the switching equivalence. The spectrum in the regular case is also
established. Products based on the subdivision are considered in Section 4. In this
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section we also address the question of [13]. Four products based on the SR-graph
operation have received the attention in Section 5.

2. Preliminaries

We use j, O, J and I to denote the all-1 vector, the all-0 matrix, the all-1 matrix
and the identity matrix, respectively. The size may be given in the subscript. The
direct sum of the matrices M and N is denoted by M ⊕N . Throughout the paper,
we use the exponential notation for the spectrum (or the Laplacian spectrum) in
which an exponent stands for the multiplicity of the corresponding eigenvalue.

We believe that the reader is familiar with the Kronecker product, but for the
sake of completeness and to recall some properties of this product, we give the
following details. For an m × n matrix P and a p × q matrix Q, the Kronecker
product P ⊗Q is the mp×nq matrix obtained from P by replacing each element pij
by pijQ [5, 9]. This is an associative operation with the property that (P ⊗Q)⊺ =
P ⊺ ⊗ Q⊺ and (P ⊗ Q)(R ⊗ S) = PR ⊗ QS whenever the products PR and QS
exist. The later implies (P ⊗Q)−1 = P−1⊗Q−1 whenever P and Q are invertible.
Moreover, if m = n and q = p, then det(P ⊗ Q) = (detP )p(detQ)n. These
properties will be used in the forthcoming sections without noting.

Following [9], we say that the M -coronal χM (x) of an n × n matrix M is the
entry sum of (xIn −M)−1, that is χM (x) = j⊺(xIn −M)−1j. If M has a constant
row sum l, then χM (x) = n

x−l .

3. Subdivisions and SR-graphs

To define the operations of the last title, we need the following notions. In
the spirit of [4, 18], for a signed graph Σ = (G, σ), we introduce the vertex-edge
orientation η : V (G) × E(G) −→ {1, 0,−1} formed by obeying these rules: (a)
η(u, vw) = 0 whenever u /∈ {v, w}, (b) η(v, vw) = 1 or η(v, vw) = −1 and (c)
η(v, vw)η(w, vw) = −σ(vw). The incidence matrix Bη = (ηij) is a vertex-edge
incidence matrix derived from Σ, such that its (i, j)-entry is η(i, j). This matrix
plays a significant role in defining several products on signed graphs, see [4, 17]. In
addition, the Laplacian matrix is obtained as a row-by-row product of the matrix
Bη with itself. Note that the eigenvalues of B⊺

ηBη are the eigenvalues of BηB
⊺
η

together with 0 of multiplicity m− n, where |V (G)| = n and |E(G)| = m.
We proceed with the subdivision of a signed graph. Let Ση be a signed graph

Σ accompanied with the vertex-edge orientation η. The adjacency matrix of the
subdivision of Ση is

A(S(Ση)) =

(
On Bη

B⊺
η Om

)
. (3.1)

Evidently, S(Ση) is bipartite. An example is illustrated in Figure 1. In the two-
steps procedure, a vertex-edge orientation is assigned according to defining rules
(a)–(c), and the subdivision is constructed according to the previous definition (i.e.,
it is extracted from the adjacency matrix (3.1)). Further details are given in the
next remark.
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Σ Ση S(Ση) ∼= S(Σ)

Σ Ση SR(Ση) ∼= SR(Σ)

Figure 1. Signed graphs, vertex-edge orientations, and the cor-
responding subdivisions and SR-graphs. Negative edges are
dashed.

Remark 3.1. Any vertex-edge orientation η gives rise to the same adjacency
matrix and the same Laplacian matrix of Σ. However, A(S(Ση)) depends on η.
Let Bη′ = BηS, where S is a diagonal matrix with ±1 on the main diagonal. It
can be easily seen that A(S(Ση′)) = (In ⊕ S)A(S(Ση))(In ⊕ S). In other words,
changing the vertex-edge orientation results in a switching equivalent subdivision.

We have noted in the introductory section that the subdivision of a signed graph
has attracted an attention in recent literature. Accordingly, we quote the following
result concerning the spectrum.

Lemma 3.2 ([3]). Let Σ be a signed graph with n vertices and m edges. If
µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn ≥ 0 are its Laplacian eigenvalues, then the eigen-
values of (the adjacency matrix of) S(Σ) are ±√

µ1,±
√
µ2, . . . ,±

√
µn−1 and 0

with multiplicity m−n+2 if Σ is balanced, and ±√
µ1,±

√
µ2, . . . ,±

√
µn−1,±

√
µn

and 0 with multiplicity m− n, otherwise.

We continue with signed R-graphs (or SR-graphs, as we already said). The
adjacency matrix of the SR-graph of a signed graph Ση is

A(SR(Ση)) =

(
A(Σ) Bη

B⊺
η Om

)
.
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Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4483.

Submitted: October 14, 2023
Accepted: November 6, 2024
Published (early view): November 14, 2024

6 MIR RIYAZ UL RASHID, S. PIRZADA, TAHIR SHAMSHER, AND ZORAN STANIĆ

It is easy to see that the signature σSR is defined by σSR(vw) = σ(vw) and
σSR(uv) = η(v, vw), where σ is the signature of Σ and u is a new vertex corre-
sponding to the edge vw. For an example, see again Figure 1. There, an unsigned
graph appears in the role of Σ as it is interpreted as a signed graph with without
negative edges.

Remark 3.3. Needless to add, the underlying graph of S(Ση) is the subdivision of
the underlying graph G. Similarly, SR(Ση) is underlined by R(G). One may also
observe that there is an other way to define the subdivision or the SR-graph: In
the first case every edge falls apart into two new edges that inherit the sign from
the original one, and in the second case two edges incident with a new vertex, say
u, share the sign with the edge that corresponds to u. However, our concept does
not deviate from definitions of a signed line graph and a total graph of a signed
graph [4, 18].

Finally, considering an ordinary graph as a signed graph with the all-positive
signature, we observe that definitions of a subdivision and an SR-graph do not
generalize the corresponding definitions in the context of graphs.

We resolve the question on balance of S(Σ) and SR(Σ). It follows from definition
of S(Σ) that this signed graph is balanced if and only if every cycle in Σ has an
even number of positive edges; in other words, every even cycle is positive and
every odd cycle is negative.

If Σ has t = t++t− triangles (where t+ and t− denote the number of positive and
the number negative triangles, respectively), then SR(Ση) has exactly t

+ positive
and t− +m negative triangles. Consequently, an SR-graph with at least one edge
is always unbalanced.

The remainder of this section is exclusive to SR-graphs. We show that SR(Σ)
is stable under changing the vertex-edge orientation and under switching on Σ. We
also compute the eigenvalues of SR(Σ) in terms of eigenvalues of Σ, when Σ is
regular.

Theorem 3.4. Let η1 and η2 be two vertex-edge orientations on Σ. Then SR(Ση1)
and SR(Ση2

) are switching equivalent.

Proof. There exists an m ×m diagonal matrix X with ±1 on the main diagonal
such that Bη1

= Bη2
X. Now,

A(SR(Ση1
)) =

(
A(Σ) Bη1

B⊺
η1

O

)
=

(
A(Σ) Bη2X
X⊺B⊺

η2
O

)
=

(
I O
O X⊺

)(
A(Σ) Bη2

B⊺
η2

O

)(
I O
O X

)
=
(
I ⊕X

)
A(SR(Ση2

))
(
I ⊕X

)
,

and we are done, since the adjacency matrices are switching similar. □

Henceforth, the subscript η will not be specified.

https://doi.org/10.33044/revuma.4483
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Theorem 3.5. If Σ1 and Σ2 are switching equivalent signed graphs, then SR(Σ1)
and SR(Σ2) are also switching equivalent.

Proof. It holds A(Σ1) = X−1A(Σ2)X, for some switching matrix X. If B is a
vertex-edge incidence matrix of Σ1, then B′ = XB plays the same role for Σ2.
Now,

A(SR(Σ2)) =

(
A(Σ2) B′

B′⊺ O

)
=

(
XA(Σ1)X

−1 XB
(XB)⊺ O

)
=

(
X O
O I

)(
A(Σ1) B
B⊺ O

)(
X−1 O
O I

)
=
(
X ⊕ I

)
A(SR(Σ1))

(
X ⊕ I

)
,

which leads to the desired result. □

We compute the spectrum of SR(Σ) when Σ is regular.

Theorem 3.6. Let Σ be an r-regular signed graph with n vertices and eigenvalues
λ1, λ2, . . . , λn. The eigenvalues of SR(Σ) are 0 with multiplicity ( r2 − 1)n and

1
2 (λi ±

√
λi

2 − 4(λi − r)) , for 1 ≤ i ≤ n.

Proof. Since Σ is r-regular, we have

BB⊺ = L(Σ) = D(G)−A(Σ) = rI −A(Σ),

for a vertex-edge incidence matrix B. Using the previous identity and the Schur
complement formula (see [5, Lemma 2.2]), we compute the characteristic polyno-
mial of SR(Σ) as follows

ϕSR(Σ)(x) =det

(
xIn −A(Σ) −B

−B⊺ xIm

)
= det(xIm) det(xI −A(Σ)−B(xIm)−1B⊺)

=xm det
(
xI −A(Σ)− BB⊺

x

)
= x(

r
2−1)·n

n∏
i=1

(x2 − λix− r + λi).

The roots of x2 − λix− r+ λi are
1
2 (λi ±

√
λi

2 − 4(λi − r)), and we are done. □

This section is concluded with a corollary concerning the distribution of the
eigenvalues of SR(Σ). We recall from the introductory section that λ1 and λn
denote the largest and the least eigenvalue, respectively.

Corollary 3.7. Under the assumptions of Theorem 3.6, the spectrum of SR(Σ)

lies in [ 12 (λn −
√
λ2n − 4(λn − r)), 1

2 (λ1 +
√
λ21 − 4(λ1 − r))].

Proof. For x ∈ [−r, r], the function f1(x) =
1
2 (x +

√
x2 − 4(x− r)) is increasing.

Hence, its maximum is attained at x = λ1. Similarly, the function f2(x) =
1
2 (x −√

x2 − 4(x− r)) is also increasing, and thus its minimum is attained at x = λn.
Therefore, the entire spectrum of SR(Σ) lies in [f2(λn), f1(λ1)], as desired. □

https://doi.org/10.33044/revuma.4483
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K2

K2K2

K2

K2K2

Figure 2. The subdivision-vertex neighbourhood corona of a neg-
ative triangle and K2, and the subdivision-edge neighbourhood
corona of the same constituents.

4. Products based on subdivisions and the corresponding spectra

In this section, we define two products of signed graphs based on subdivisions
and compute the characteristic polynomials of the adjacency matrix. Under certain
regularity assumptions, we deal with the Laplacian characteristic polynomial and
eigenvalues of both matrices. We also consider the generalized subdivision (of a
signed graph) introduced in [13], and compute the corresponding spectrum. In this
way, we positively answer a research problem posed in the same reference.

Throughout the section we deal with two signed graphs, Σ1 and Σ2, and assume
that Σi has ni vertices and mi edges, for i ∈ {1, 2}.

Definition 4.1. The subdivision-vertex neighbourhood corona Σ1⊡S Σ2 of Σ1 and
Σ2 is the signed graph obtained from S(Σ1) and n1 copies of Σ2 by joining every
neighbour, say v, of the vertex i of Σ1 to every vertex in the ith copy of Σ2 by an
edge which inherits the sign from iv.

The signed graph Σ1⊡SΣ2 has n1+m1+n1n2 vertices and 2m1+n1m2+2m1n2
edges.

Definition 4.2. The subdivision-edge neighbourhood corona Σ1 ⊟S Σ2 of Σ1 and
Σ2 is the signed graph obtained from S(Σ1) and m1 copies of Σ2 by joining every
neighbour, say v, of the vertex i ∈ V (S(Σ1)) \ V (Σ1) to every vertex in the ith
copy of Σ2 by an edge which inherits the sign from iv.

The signed graph Σ1⊟SΣ2 has n1+m1+m1n2 vertices and 2m1+m1m2+2m1n2
edges. Figure 2 illustrates the previous products.

https://doi.org/10.33044/revuma.4483
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With consistent vertex labellings, the adjacency matrices of Σ1⊡SΣ2 and Σ1⊟S

Σ2 are

A(Σ1 ⊡S Σ2) =

 O B O ⊗ J⊺
n2

B⊺ Om1×m1 B⊺ ⊗ J⊺
n2

O ⊗ Jn2 B ⊗ Jn2 In1 ⊗A(Σ2)


and

A(Σ1 ⊟S Σ2) =

 O B B ⊗ J⊺
n2

B⊺ Om1×m1
O ⊗ J⊺

n2

B⊺ ⊗ Jn2
O ⊗ Jn2

Im1
⊗A(Σ2)

 .

If Σ1 is an r-regular signed graph, then the Laplacian matrices of Σ1 ⊡S Σ2 and
Σ1 ⊟S Σ2 are

L(Σ1 ⊡S Σ2) =

 rIn1
−B O ⊗ J⊺

n2

−B⊺ (2 + 2n2)Im1
−B⊺ ⊗ J⊺

n2

O ⊗ Jn2
−B ⊗ Jn2

In1
⊗ (rIn2

+ L(Σ2)


and

L(Σ1 ⊟S Σ2) =

r(1 + n2)In1 −B −B ⊗ J⊺
n2

−B⊺ 2Im1
O ⊗ J⊺

n2

−B⊺ ⊗ Jn2
O ⊗ Jn2

Im1
⊗ (2In2

+ L(Σ2)

 .

We compute the characteristic polynomial of Σ1 ⊡S Σ2.

Theorem 4.3. Let Σ1 be a signed graph with n1 vertices, m1 edges and Laplacian
eigenvalues µ1(Σ1), µ2(Σ1), . . . , µn1

(Σ1). Let Σ2 be a signed graph with n2 vertices
and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2

(Σ2). Then the characteristic polynomial
of Σ1 ⊡S Σ2 is

ϕΣ1⊡SΣ2
(x) = xm1

n2∏
i=1

(x− λi(Σ2))
n1

n1∏
i=1

(
x−

(
χA(Σ2)(x) +

1

x

)
µi

)
.

Proof. We compute

ϕΣ1⊡SΣ2
(x) = det

 xIn1
−B O ⊗ J⊺

n2

−B⊺ xIm1 −B⊺ ⊗ J⊺
n2

O ⊗ Jn2 −B ⊗ Jn2 In1 ⊗ (xIn2 −A(Σ2))


= det

 xIn1
−B O

−B⊺ xIm1 − χA(Σ2)(x)B
⊺B O

O ⊗ Jn2 −B ⊗ Jn2 In1 ⊗ (xIn2 −A(Σ2))


=

n2∏
i=1

(x− λi(Σ2))
n1 det(M), (4.1)
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where

det(M) = det

(
xIn1

−B
−B⊺ xIm1 − χA(Σ2)(x)B

⊺B

)
= det(xIn1) det

(
xIm1

− χA(Σ2)(x)B
⊺B −B⊺(xIn1

)−1B
)

= xm1

n1∏
i=1

(
x−

(
χA(Σ2)(x) +

1

x

)
µi(Σ1)

)
. (4.2)

The desired result follows from (4.1) and (4.2). □

We say more about the spectrum of Σ1 ⊡S Σ2 when Σ2 is net-regular. Observe
that in this case, its net degree appears in its spectrum (and corresponds to the
all-1 vector).

Theorem 4.4. Suppose that, under the assumptions of Theorem 4.3, Σ2 is s-net-
regular and λk(Σ2) = s, for some fixed k (1 ≤ k ≤ n2). The spectrum of Σ1 ⊡S Σ2

consists of

(i) 0 with multiplicity m1 − n1,
(ii) λi(Σ2) with multiplicity n1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
(iii) and the roots of x3 − sx2 − (n2 + 1)µi(Σ1)x+ sµi(Σ1), for 1 ≤ i ≤ n1.

Proof. Since Σ2 is s-net-regular, we have χA(Σ2)(x) =
n2

x−s . Now,

x
(
χA(Σ2)(x) +

1

x

)
µi(Σ1) = x−

( n2
x− s

+
1

x

)
µi(Σ1)

=
1

x(x− s)

(
x2(x− s)− (n2x+ x− s)µi(Σ1)

)
=

1

x(x− s)

(
x3 − sx2 − (n2 + 1)µi(Σ1)x+ sµi(Σ1)

)
.

The desired result follows from Theorem 4.3. □

Observe that if Σ1 has l1 (1 ≤ l1 ≤ n1) distinct Laplacian eigenvalues and Σ2 is
an s-net-regular with l2 (1 ≤ l2 ≤ n2) distinct eigenvalues. Then, Σ1 ⊡S Σ2 has at
most 3l1 + l2 + 1 distinct eigenvalues.

Remark 4.5. Let Σ1 and Σ′
1 be Laplacian cospectral signed graphs, and Σ2 any

signed graph. Then, Σ1 ⊡S Σ2 and Σ′
1 ⊡S Σ2 cospectral.

If Σ1 is any signed graph, and Σ2 and Σ′
2 are cospectral signed graphs with

χA(Σ2)(x) = χA(Σ′
2)
(x), then Σ1 ⊡S Σ2 and Σ1 ⊡S Σ′

2 cospectral.
If Σ1 and Σ′

1 are Laplacian cospectral signed graphs, and Σ2 and Σ′
2 are cospec-

tral signed graphs with χA(Σ2)(x) = χA(Σ′
2)
(x), then Σ1 ⊡S Σ2 and Σ′

1 ⊡S Σ′
2 are

cospectral.

To arrive at cospectral signed graphs it is sufficient to select an appropriate pair
of constituents according to the previous remark, and construct the corresponding
subdivision-vertex neighbourhood corona. It is worth mentioning that every pair
of regular graphs, say G and H, with the same number of vertices and the same
vertex degree gives rise to a pair of cospectral regular signed graphs constructed
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in the following way: (1) insert a parallel negative edge between every pair of
adjacent vertices of both graphs, (2) their signed line graphs are cospectral. This
construction is obtained in [15, 16], and to the best of our knowledge, it has no
counterpart in the domain of ordinary graphs. The corresponding signed graphs
are regular, and therefore they are Laplacian cospectral, as well, and this is exactly
what is required in the previous remark. In the forthcoming sections, we will
meet similar discussions on cospectral or Laplacian cospectral products, and for
constructions of particular examples, we refer to the previous method.

The proofs of the following three results are analogous to the proofs of the
previous statements, so they are left to the reader. In the first, we assume that Σ1

is regular and compute the Laplacian characteristic polynomial of Σ1 ⊡S Σ2.

Theorem 4.6. Let Σ1 be an r-regular signed graph with n1 vertices, m1 edges and
eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1(Σ1). Let Σ2 be a signed graph with n2 vertices
and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2(Σ2). The Laplacian character-
istic polynomial of Σ1 ⊡S Σ2 is

ψΣ1⊡SΣ2
(x) =(x− 2− 2n2)

m1−n1

n2∏
i=1

(x− r − µi(Σ2))
n1

·
n1∏
i=1

(
(x− 2− 2n2)(x− r)− (r − λi(Σ1))(1 + (x− r)χL(Σ2)(x− r))

)
.

We proceed with the result analogous to Theorem 4.3.

Theorem 4.7. Let Σ1 be a signed graph with n1 vertices, m1 edges and Laplacian
eigenvalues µ1(Σ1), µ2(Σ1), . . . , µn1

(Σ1). Let Σ2 be a signed graph with n2 ver-
tices and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2

(Σ2). The characteristic polynomial
of Σ1 ⊟S Σ2 is

ϕΣ1⊟SΣ2
(x) = xm1

n2∏
i=1

(x− λi(Σ2))
m1

n1∏
i=1

(
x−

(
χA(Σ2)(x) +

1

x

)
µi(Σ1)

)
.

Finally we compute the Laplacian characteristic polynomial of Σ1 ⊟S Σ2 when
the first signed graph is regular.

Theorem 4.8. Let Σ1 be an r-regular signed graph with n1 vertices, m1 edges and
eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 vertices
and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2(Σ2). The Laplacian character-
istic polynomial of Σ1 ⊟S Σ2 is

ψΣ1⊟SΣ2
(x) =(x− 2)m1−n1

n2∏
i=1

(x− 2− µi(Σ2))
m1

·
n1∏
i=1

(
x− r(1 + n2)−

( 1

x− 2
+ χL(Σ2)(x− 2)

)
µi(Σ1)

)
.

We continue with a product introduced in [13].
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Σ S2,2(Σ)S(Σ)

Figure 3. An example of the generalized subdivision.

Definition 4.9 ([13]). Let S(Σ) be the subdivision of a signed graph Σ. The
generalized subdivision Sk,p(Σ) is obtained by replacing, in S(Σ), every vertex of
Σ by a cell of k non-adjacent vertices and every vertex of V (S(Σ)) \V (Σ) by a cell
of p non-adjacent vertices.

An example is illustrated in Figure 3. The spectrum of Sk,p(Σ) is computed in
[13] for p ∈ {k − 1, k}. Here we proceed to establish the result for arbitrary values
of p and k.

Theorem 4.10. Let Σ be a signed graph with n vertices, m edges and Laplacian
eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn ≥ 0. The eigenvalues of Sk,p(Σ) are

0(k−1)n+pm+2,±
√
pkµ1,±

√
pkµ2, . . . ,±

√
pkµn−1 if Σ is balanced,

0(k−1)n+pm,±
√
pkµ1,±

√
pkµ2 . . . ,±

√
pkµn−1,±

√
pkµn if Σ is unbalanced.

Proof. We distinguish the following cases.
Case 1: k ≤ p. With consistent vertex labellings, we get

A(Sk,p(Σ)) =



O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
O B O B · · · O B B B · · · B
...

...
...

...
...

O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
B⊺ O B⊺ O · · · B⊺ O O O · · · O
...

...
...

...
...

B⊺ O B⊺ O · · · B⊺ O O O · · · O


.

Subcase 1.1: Σ is balanced. Let x and y be n×1 andm×1 vectors such that z =(
x
y

)
is an eigenvector corresponding to the non-zero eigenvalue λi, 1 ≤ i ≤ 2n−2,

of S(Σ). Then A(S(Σ))z = λiz implies By = λix and B⊺x = λiy. Consider the

(kn+pm)×1 vectorw = (
√
px⊺,

√
ky⊺,

√
px⊺, . . . ,

√
px⊺,

√
ky⊺,

√
ky⊺, . . . ,

√
ky⊺)⊺.

https://doi.org/10.33044/revuma.4483
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We have

A(Sk,p(Σ))w =



O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
O B O B · · · O B B B · · · B
...

...
...

...
...

O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
B⊺ O B⊺ O · · · B⊺ O O O · · · O
...

...
...

...
...

B⊺ O B⊺ O · · · B⊺ O O O · · · O





√
px√
ky√
px
...√
px√
ky√
py
...√
py


=

√
pkλiw. Therefore,

√
pkλi is an eigenvalue of Sk,p(Σ). Now, the result follows

by Lemma 3.2.
Subcase 1.2: Σ is unbalanced. This subcase is proved by a slight modification

of the proof of the previous one.
Case 2: k ≥ p. Here we have

A(Sk,p(Σ)) =



O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
O B O B · · · O B B · · · B
...

...
...

...
...

O B O B · · · O B B B · · · B
B⊺ O B⊺ O · · · B⊺ O O O · · · O
O B O B · · · O B O O · · · O
...

...
...

...
...

O B O B · · · O B O O · · · O


,

As before, we proceed with two subcases, where in the first one we construct
the eigenvector w = (

√
px⊺,

√
ky⊺,

√
px⊺, . . . ,

√
px⊺,

√
ky⊺,

√
px⊺, . . . ,

√
px⊺)⊺ cor-

responding to
√
kpλi, and the second subcase is very similar. □

5. Products based on SR-graphs and the corresponding spectra

As in the previous section, we deal with signed graphs Σi with ni vertices and
mi edges, for i ∈ {1, 2}. We first define the products, and then consider their
characteristic polynomials and spectra.

Definition 5.1. The SR-vertex corona Σ1 ⊙SR Σ2 of Σ1 and Σ2 is the signed
graph obtained from SR(Σ1) and n1 copies of Σ2 by joining the ith vertex of Σ1

by a positive edge to every vertex in the ith copy of Σ2.

Definition 5.2. The SR-edge corona Σ1⊖SRΣ2 of Σ1 and Σ2 is the signed graph
obtained from SR(Σ1) andm1 copies of Σ2 by joining the ith vertex of V (SR(Σ1))\
V (Σ1) by a positive edge to every vertex in the ith copy of Σ2.
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Figure 4. The SR-vertex corona, the SR-edge corona, the SR-
vertex neighbourhood corona and the SR-edge neighbourhood
corona of two copies of K2.

Definition 5.3. The SR-vertex neighbourhood corona Σ1 ⊡SR Σ2 of Σ1 and Σ2

is the signed graph obtained from SR(Σ1) and n1 copies of Σ2 by joining every
neighbour, say v, of the vertex i of Σ1 to every vertex in the ith copy of Σ2 by an
edge which inherits the sign from iv.

Definition 5.4. The SR-edge neighbourhood corona Σ1 ⊟SR Σ2 of Σ1 and Σ2 is
the signed graph obtained from SR(Σ1) and m1 copies of Σ2 by joining every
neighbour, say v, of the vertex i ∈ V (SR(Σ1)) \ V (Σ1) to every vertex in the ith
copy of Σ2 by an edge that inherits the sign from iv.

Figure 4 illustrates the previous products. Each of them is separated in a sub-
section.

5.1. SR-vertex corona. We first determine the characteristic polynomial of Σ1⊙SR

Σ2 when Σ1 is regular.

Theorem 5.5. Let Σ1 be an r1-regular signed graph with n1 vertices, m1 edges
and eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1(Σ1). Let Σ2 be a signed graph with n2
vertices and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2(Σ2). The characteristic polyno-
mial of Σ1 ⊙SR Σ2 is

ϕΣ1⊙SRΣ2
(x) = xm1−n1

n2∏
i=1

(x−λi(Σ2))
n1

n1∏
i=1

(
x2−(χA(Σ2)(x)+λi(Σ1))x−r1+λi(Σ1)

)
.

Proof. If B be the incidence matrix of Σ1, then with consistent vertex labellings,
the adjacency matrix of Σ1 ⊙SR Σ2 is given by

A(Σ1 ⊙SR Σ2) =

 A(Σ1) B In1
⊗ J⊺

n2

B⊺ Om1×m1
Om1×n1

⊗ J⊺
n2

In1 ⊗ Jn2 On1×m1 ⊗ Jn2 In1 ⊗A(Σ2)

 .
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We compute

ϕΣ1⊙SRΣ2
(x) = det

xIn1
−A(Σ1) −B −In1

⊗ J⊺
n2

−B⊺ xIm1 Om1×n1 ⊗ J⊺
n2

−In1 ⊗ Jn2 On1×m1 ⊗ Jn2 In1 ⊗ (xIn2 −A(Σ2))


= det

(
xIn1 −A(Σ1)− χA(Σ2)(x)In1 −B O

−B⊺ xIm1 O

−In1 ⊗ Jn2 On1×m1 ⊗ Jn2 In1 ⊗ (xIn2 −A(Σ2))

)

=

n2∏
i=1

(x− λi(Σ2))
n1 · det(M), (5.1)

where det(M) is computed by the Schur complement formula as

det(M) = det

(
xIn1

−A(Σ1)− χA(Σ2)(x)In1
−B

−B⊺ xIm1

)
= det(xIm1) det

(
xIn1

−A(Σ1)− χA(Σ2)(x)In1
−B(xIm1

)−1B⊺
)

= det(xIm1
) det

(
xIn1 −A(Σ1)− χA(Σ2)(x)In1 − 1

xL(Σ1)
)

= det(xIm1
) det

(
xIn1

−A(Σ1)− χA(Σ2)(x)In1
− 1

x (r1In1
−A(Σ1))

)
= xm1−n1

n1∏
i=1

(
x2 − (χA(Σ2)(x) + λi(Σ1))x− r1 + λi(Σ1)

)
. (5.2)

Equalities (5.1) and (5.2) lead to the result. □

We can say more if we set Σ2 to be net-regular.

Theorem 5.6. Suppose that, under the assumptions of Theorem 5.5, Σ2 is s-net-
regular with λk(Σ2) = s for some fixed k (1 ≤ k ≤ n2). The spectrum of Σ1⊙SRΣ2

consists of

(i) 0 with multiplicity m1 − n1,
(ii) λi(Σ2) with multiplicity n1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
(iii) and the roots of x3 − (s + λi(Σ1))x

2 − (n2 − (s + 1)λi(Σ1) + r1)x + (r1 −
λi(Σ1))s, for 1 ≤ i ≤ n1.

Proof. Item (i) follows directly from Theorem 5.5.
Since Σ2 is s-net-regular, we have χA(Σ2)(x) = n2

x−s . Also, x = s = λk(Σ2) is

the only pole of χA(Σ2)(x), and Theorem 5.5 implies that λi(Σ2) is an eigenvalue
of Σ1 ⊙SR Σ2 for every i specified in the formulation the theorem. This gives (ii).

The remaining 3n1 eigenvalues satisfy (x−s)(x2−( n2

x−s+λi(Σ1))x−r1+λi(Σ1)) =

0, which after a simple algebraic transformation becomes x3 − (s + λi(Σ1))x
2 −

(n2 − (s+ 1)λi(Σ1) + r1)x+ (r1 − λi(Σ1))s = 0, and we are done. □

It is not difficult to see that Σ1⊙SRΣ2 has at most 3l1+l2+1 distinct eigenvalues
where li is the number of distinct eigenvalues of Σi. As in Section 4, we consider
the cospectrality.

Remark 5.7. Σ′
1 ⊙SR Σ2 are cospectral in the following situations:

(1) Σ1 and Σ′
1 are r-regular and cospectral;
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(2) Σ1 is regular, and Σ2 and Σ′
2 are cospectral with χA(Σ2)(x) = χA(Σ′

2)
(x);

(3) If Σ1 and Σ′
1 are cospectral and r-regular, and Σ2 and Σ′

2 are cospectral
with χA(Σ2)(x) = χA(Σ′

2)
(x).

Now we consider the Laplacian characteristic polynomial.

Theorem 5.8. Let Σ1 be an r1-regular signed graph with n1 vertices, m1 edges and
eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 vertices
and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2

(Σ2). The Laplacian character-
istic polynomial of Σ1 ⊙SR Σ2 is

ψΣ1⊙SRΣ2
(x) =xm1

n2∏
i=1

(x− 1− µi(Σ2))
n1

·
n1∏
i=1

(
x− r1 − n2 − χL(Σ2)(x− 1)−

(
1 +

1

x− 2

)
(r1 − λi(Σ1))

)
.

Proof. The Laplacian matrix of Σ1 ⊙SR Σ2 is

L(Σ1 ⊙SR Σ2) =

L(Σ1) + (r1 + n2)In1 −B −In1 ⊗ J⊺
n2

−B⊺ 2Im1
Om1×n1

⊗ J⊺
n2

−In1
⊗ Jn2

On1×m1
⊗ Jn2

In1
⊗ (L(Σ2) + In2

)

 ,

which leads to

ψΣ1⊙SRΣ2
(x) = det

(x− r1 − n2)In1
− L(Σ1) B In1

⊗ J⊺
n2

B⊺ (x− 2)Im1 Om1×n1
⊗ J⊺

n2
In1

⊗ Jn2
On1×m1

⊗ Jn2
In1

⊗ ((x− 1)In2
− L(Σ2))


=

n2∏
i=1

(x− 1 − µi(Σ2))
n1 det(M),

where

det(M) = det

(
(x− r1 − n2)In1

− L(Σ1)− χL(Σ2)(x− 1)In1
B

B⊺ (x− 2)Im1

)
= det((x− 2)Im1

) det ((x− r1 − n2)In1
− L(Σ1) − χL(Σ2)(x− 1)In1

− 1
x−2

L(Σ1))

= det((x− 2)Im1
) det ((x− r1 − n2 − χL(Σ2)(x− 1))In1 − (1 + 1

x−2
)L(Σ1))

= (x− 2)m1

n1∏
i=1

(
x− r1 − n2 − χL(Σ2)(x− 1)− (1 +

1

x− 2
)(r1 − λi(Σ1))

)
,

and the desired result follows. □

We can say more if Σ2 is co-regular. We recall from Section 2 that if its vertex
degree is r2 and its net degree is s, then we simply say that Σ2 belongs to the
(r2, s) co-regularity class. In this case r2 − s is its Laplacian eigenvalue.

Theorem 5.9. Suppose that, under the assumptions of Theorem 5.8, Σ2 is co-
regular of (r2, s), with µk(Σ2) = r2 − s for some fixed k (1 ≤ k ≤ n2). The
Laplacian spectrum of Σ1 ⊙SR Σ2 consists of

(i) 2 with multiplicity m1 − n1,
(ii) µi(Σ2) with multiplicity n1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
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(iii) and the roots of x3 − (2r1 + r2 − s+ n2 +3− λi(Σ1))x
2 + (5r1 +2n2 +2−

2λi(Σ1)+(r2−s)(2r1+n2+2−λi(Σ1))x−(3r1+2n2−λi(Σ1))(1+r2−s)+2n2,
for 1 ≤ i ≤ n1.

Proof. From the co-regularity of Σ2, we have χL(Σ2)(x−1) = n2

x−1−r2+s . This leads
to

x− r1 − n2 − χL(Σ2)(x− 1)−
(
1 +

1

x− 2

)
(r1 − λi (Σ1))

= x− r1 − n2 −
n2

x− 1− r2 + s
−

(
1 +

1

x− 2

)
(r1 − λi (Σ1))

=
1

(x− 1− r2 + s) (x− 2)

(
(x− 2) (x− (r1 + n2)) (x− (1 + r2 − s))− n2x+ 2n2 − (x− 1)

· (x− (1 + r2 − s)) (r1 − λi (Σ1))
)

=
1

(x− 1− r2 + s) (x− 2)

(
(x− 2)

(
x2 − (r1 + n2 + 1 + r2 − s)x+ (r1 + n2) (1 + r2 − s)

)
− n2x+ 2n2 −

(
x2 − (2 + r2 − s)x+ 1 + r2 − s

)
(r1 − λi (Σ1))

)
=

1

(x− 1− r2 + s) (x− 2)

(
x3 − (r1 + n2 + r2 + 1− s+ 2 + r1 − λi (Σ1))x

2

+ ((r1 + n2) (1 + r2 − s) + 2 (r1 + n2 + r2 − s+ 1)− n2 + (2 + r2 − s) (r1 − λi (Σ1)))x

− 2 (r1 + n2) (1 + r2 − s) + 2n2 − (1 + r2 − s) (r1 − λi (Σ1))
)

=
1

(x− 1− r2 + s) (x− 2)

(
x3 − (2r1 + r2 − s+ n2 + 3− λi (Σ1))x

2 + (5r1 + 2n2 + 2− 2λi (Σ1)

+ (r2 − s) (2r1 + n2 + 2− λi (Σ1)))x+ 2n2 − (1 + r2 − s) (3r1 + 2n2 − λi (Σ1))
)
.

Now, the result follows in view of Theorem 5.8. □

Remark 5.10. Laplacian cospectral signed graphs are obtained either by taking
cospectral r-regular signed graphs Σ1 and Σ2, or Laplacian cospectral signed graphs
Σ2 and Σ′

2 with χL(Σ2)(x− 1) = χL(Σ′
2)
(x− 1), or by combining the previous two

settings.

5.2. SR-edge corona. In this and the following two subsections, we follow the
concept of the previous one. In particular, we omit discussions dealing with con-
structions of cospectral or Laplacian cospectral signed graphs based on the con-
sidered products. All of them are analogous to those reported in the previous
subsection (see also Section 4). We first treat with the characteristic polynomial.

Theorem 5.11. Let Σ1 be an r1-regular signed graph with n1 vertices, m1 edges
and eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 ver-
tices and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2

(Σ2). The characteristic polynomial
of Σ1 ⊖SR Σ2 is

ϕΣ1⊖SRΣ2(x) =(x− χA(Σ2)(x))
m1−n1

n2∏
i=1

(x− λi(Σ2))
m1

·
n1∏
i=1

(
x2 − (χA(Σ2)(x) + λi(Σ1))x+ (χA(Σ2)(x) + 1)λi(Σ1)− r1

)
.
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Proof. From

A(Σ1 ⊖SR Σ2) =

 A(Σ1) B On1×m1 ⊗ J⊺
n2

B⊺ Om1×m1 Im1 ⊗ J⊺
n2

Om1×n1
⊗ Jn2

Im1
⊗ Jn2

Im1
⊗A(Σ2)

 ,

we obtain

ϕΣ1⊖SRΣ2(x) = det

(
xIn1

− A(Σ1) −B O
−B⊺ xIm1 − χA(Σ2)(x)Im1 O

Om1×n1
⊗ Jn2

Im1
⊗ Jn2

Im1
⊗ (xIn2

− A(Σ2))

)
=

n2∏
i=1

(x− λi(Σ2))
m1 det(M),

along with

det(M) = det

(
xIn1

−AΣ1
−B

−B⊺ xIm1
− χA(Σ2)(x)Im1

)
= (x− χA(Σ2)(x))

m1−n1

·
n1∏
i=1

(
x2 − (χA(Σ2)(x) + λi(Σ1))x+ (χA(Σ2)(x) + 1)λi(Σ1)− r1

)
,

where we have omitted details and refer the reader to the similar computation in
the proofs of Theorems 4.3 and 5.5. The result follows by combining the previous
equalities. □

Imposing the net-regularity to Σ2 we arrive at the following result.

Theorem 5.12. Suppose that, under the assumptions of Theorem 5.11, Σ2 is s-
net-regular. The spectrum of Σ1 ⊖SR Σ2 consists of

(i) λi(Σ2) with multiplicity m1 = n1r1
2 , for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},

(ii) the roots of x2 − sx− n2, both with multiplicity m1 − n1,
(ii) and the roots of x3 − (s+ λi(Σ1))x

2 − (n2 − (s+ 1)λi(Σ1) + r1)x+ (n2 −
s)λi(Σ1) + sr1, for 1 ≤ i ≤ n1.

Proof. Item (i) follows from Theorem 5.11 as χA(Σ2)(x) =
n2

x−s and x = s = λk(Σ2)

is the only pole of χA(Σ2)(x).
The remaining n1 + 2m1 eigenvalues are the roots of (x − s)(x − n2

x−s ) and

(x− s)(x2− ( n2

x−s +λi(Σ1))x+( n2

x−s +1)λi(Σ1)− r1), which leads to items (ii) and

(iii). □

Now, the Laplacian characteristic polynomial.
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Theorem 5.13. Let Σ1 be an r1-regular signed graph with n1 vertices, m1 edges
and eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 ver-
tices and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2

(Σ2). The Laplacian char-
acteristic polynomial of Σ1 ⊖SR Σ2 is

ψΣ1⊖SRΣ2(x) = (x− 2− n2 − χL(Σ2)(x− 1))m1−n1

n2∏
i=1

(x− 1− µi(Σ2))
m1

·
n1∏
i=1

(
(x−r1)(x−2−n2−χL(Σ2)(x−1))−(x−2−n2−χL(Σ2)(x−1)+1)(r1−λi(Σ1))

)
.

Proof. From

L(Σ1 ⊖SR Σ2) =

L(Σ1) + r1In1
−B On1×m1

⊗ J⊺
n2

−B⊺ (n2 + 2)Im1×m1
−Im1

⊗ J⊺
n2

Om1×n1 ⊗ Jn2 −Im1 ⊗ Jn2 Im1 ⊗ (L(Σ2) + In2)

 ,

we compute

ψΣ1⊖SRΣ2
(x) =

n2∏
i=1

(x− 1− µi(Σ2))
m1 det(M),

where

det(M) = det

(
(x− r1)In1

− LΣ1
B

B⊺ (x− 2− n2)Im1
− χL(Σ2)(x− 1)Im1

)
= det((x− 2− n2)Im1

− χL(Σ2)(x− 1)Im1
)

·det ((x− r1)In1 − L(Σ1)−B((x− 2− n2)Im1 − χL(Σ2)(x− 1)Im1 )
−1B⊺)

= det((x− 2− n2)Im1
− χL(Σ2)(x− 1)Im1

)

·det
(
(x− r1)In1

− (1 + 1
x−2−n2−χL(Σ2)(x−1) )L(Σ1)

)
(5.3)

= (x− 2− n2 − χL(Σ2)(x− 1))m1−n1

·
n1∏
i=1

(
(x− r1)(x− 2− n2 − χL(Σ2)(x− 1))

−(x− 1− n2 − χL(Σ2)(x− 1))(r1 − λi(Σ1))
)
, (5.4)

and the result follows. □

Now, we include the co-regularity.

Theorem 5.14. Suppose that, under the assumptions of Theorem 5.13, Σ2 is co-
regular signed graph of (r2, s), with µk(Σ2) = r2 − s for some fixed k (1 ≤ k ≤ n2).
The Laplacian spectrum of Σ1 ⊖SR Σ2 consists of

(i) 1 + µi(Σ2) with multiplicity m1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
(ii) the roots of x2−(3+r2−s+n2)x+(r2−s)(2+n2)+2, both with multiplicity

m1 − n1,
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(iii) and the roots of x3− (3+2r1+r2−s+n2−λi(Σ1))x
2+(λi(Σ1)−n2−r1+

(2 + n2)(2r1 − λi(Σ1)) + (1 + r2 − s)(2r1 + n2 + 2− λi(Σ1)))x+ n2(2r1 −
λi(Σ1))− (1 + r2 − s)(r1(n2 + 2) + (r1 − λi(Σ1))(n2 + 1)), for 1 ≤ i ≤ n1.

Proof. Since Σ2 is co-regular, we have χL(Σ2)(x− 1) = n2

x−1−r2+s , which yields

x− 2− n2 − χL(Σ2)(x− 1) = x− 2− n2 −
n2

x− 1− r2 + s

=
(x− 2− n2)(x− 1− r2 + s)− n2

x− 1− r2 + s

=
x2 − (3 + r2 − s+ n2)x+ (n2 + 2)(1 + r2 − s)− n2

x− 1− r2 + s

=
x2 − (3 + r2 − s+ n2)x+ (n2 + 2)(r2 − s) + 2

x− 1− r2 + s
.

We also have

(x− r1)
(
x− 2− n2 − χL(Σ2)(x− 1)

)
−

(
x− 1− n2 − χL(Σ2)(x− 1)

)
(r1 − λ1 (Σ1))

= (x− r1)

(
x− 2− n2 −

n2

x− 1− r2 + s

)
−

(
x− 1− n2 −

n2

x− 1− r2 + s

)
(r1 − λi (Σ1)) .

A direct algebraic calculus transforms the previous expression to

1

x− 1− r2 + s

(
x3 − (3 + r2 − s+ n2 + 2r1 − λi (Σ1))x

2 + (λi (Σ1)

−n2 − r1 + (2 + n2) (2r1 − λi (Σ1)) + (1 + r2 − s) (2r1 + n2 + 2− λi (Σ1)))x

+ n2 (2r1 − λi (Σ1))− (1 + r2 − s) (r1 (n2 + 2) + (r1 − λi (Σ1)) (n2 + 1))
)
.

The result follows by taking into account Theorem 5.13. □

5.3. SR-vertex neighbourhood corona.

Theorem 5.15. Let Σ1 be a signed graph with n1 vertices, m1 edges and Lapla-
cian eigenvalues µ1(Σ1), µ2(Σ1), . . . , µn1

(Σ1). Let Σ2 be a signed graph with n2
vertices and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2(Σ2). The characteristic polyno-
mial of Σ1 ⊡SR Σ2 is

ϕΣ1⊡SRΣ2
(x) =xm1−n1

n2∏
i=1

(x− λi(Σ2))
n1

n1∏
i=1

(
x− χA(Σ2)(x)µi(Σ1)

)
· det

(
xIn1

−A(Σ1)− χA(Σ2)(x)A
2(Σ1)− (B + χA(Σ2)(x)A(Σ1)B)

·(xIm1 − χA(Σ2)(x)B
⊺B)−1(B⊺ + χA(Σ2)(x)B

⊺A(Σ1))

)
,

where B is the incidence matrix of Σ1.

Proof. From

A(Σ1 ⊡SR Σ2) =

 A(Σ1) B A(Σ1)⊗ J⊺
n2

B⊺ Om1×m1
B⊺ ⊗ J⊺

n2

A(Σ1)⊗ Jn2 B ⊗ Jn2 In1 ⊗A(Σ2)
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we obtain

ϕΣ1⊡SRΣ2
(x) =

n2∏
i=1

(x− λi(Σ2))
n1 · det(M),

where

det(M) = det

(
xIn1 −A(Σ1)− χA(Σ2)(x)A

2(Σ1) −B − χA(Σ2)(x)A(Σ1)B
−B⊺ − χA(Σ2)(x)B

⊺A(Σ1) xIm1 − χA(Σ2)(x)B
⊺B

)
= xm1−n1

n1∏
i=1

(
x− χA(Σ2)(x)µi(Σ1)

)
·det

(
xIn1

−A(Σ1)− χA(Σ2)(x)A
2(Σ1)− (B + χA(Σ2)(x)A(Σ1)B)

·(xIm1
− χA(Σ2)(x)B

⊺B)−1(B⊺ + χA(Σ2)(x)B
⊺A(Σ1))

)
,

and the result follows. □

The Laplacian characteristic polynomial is computed in a similar way. To avoid
repetitive proofs, we give less details.

Theorem 5.16. Let Σ1 be a r1-regular signed graph with n1 vertices, m1 edges and
eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 vertices
and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2

(Σ2). The Laplacian character-
istic polynomial of Σ1 ⊡SR Σ2 is

ψΣ1⊡SRΣ2
(x) = (x− 2n2 − 2)m1−n1

n2∏
i=1

(x− 2r1 − µi(Σ2))
n1

·
n1∏
i=1

(
x− 2n2 − 2− χL(Σ2)(x− 2r1)(r1 − λi(Σ1)

)
·det

(
(x− r1(1 + n2))In1 − L(Σ1)− χL(Σ2)(x− 2r1)A2(Σ1)− (B − χL(Σ2)(x− 2r1)A(Σ1)B)

·((x− 2n2 − 2)Im1 − χL(Σ2)(x− 2r1)B⊺B)−1(B⊺ − χL(Σ2)(x− 2r1)B⊺A(Σ1))

)
,

where B is the incidence matrix of Σ1.

Proof. From

L(Σ1 ⊡SR Σ2) =

(
L(Σ1) + r1(1 + n2)In1 −B −A(Σ1)⊗ J⊺

n2

−B⊺ (2 + 2n2)Im1×m1 −B⊺ ⊗ J⊺
n2

−A(Σ1)⊗ Jn2 −B ⊗ Jn2 In1 ⊗ (L(Σ2) + 2r1In2)

)
.

we compute

ψΣ1⊡SRΣ2
(x) =

n2∏
i=1

(x− 2r1 − µi(Σ2))
n1 det(M),

where the latter determinant is

det

(
(x− r1(1 + n2))In1 − L(Σ1) − χL(Σ2)(x− 2r1)A

2(Σ1) B − χL(Σ2)(x− 2r1)A(Σ1)B

B⊺ − χL(Σ2)(x− 2r1)B
⊺A(Σ1) (x− 2n2 − 2)Im1

− χL(Σ2)(x− 2r1)B
⊺B

)

and it gives the remaining factor of the polynomial. □
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5.4. SR-edge neighbourhood corona.

Theorem 5.17. Let Σ1 be an r1-regular signed graph with n1 vertices, m1 edges
and eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 ver-
tices and eigenvalues λ1(Σ2), λ2(Σ2), . . . , λn2

(Σ2). The characteristic polynomial
of Σ1 ⊟SR Σ2 is

ϕΣ1⊟SRΣ2
(x) = xm1−n1

n2∏
i=1

(x− λi(Σ2))
m1

·
n1∏
i=1

(
(x2−(r1χA(Σ2)(x)−(1−χA(Σ2)(x))λi(Σ1))x−r1+λi(Σ1)

)
.

Proof. From

A(Σ1 ⊟SR Σ2) =

 A(Σ1) B B ⊗ J⊺
n2

B⊺ Om1×m1
Om1×m1

⊗ J⊺
n2

B⊺ ⊗ Jn2
Om1×m1

⊗ Jn2
Im1

⊗A(Σ2)

 .

we compute

ϕΣ1⊟SRΣ2
(x) = det

(
xIn1 − A(Σ1) − χA(Σ2)(x)BB

⊺ −B O

−B⊺ xIm1 O
−B⊺ ⊗ Jn2

Om1×m1
⊗ Jn2

Im1
⊗ (xIn2

− A(Σ2))

)
=

n2∏
i=1

(x− λi(Σ2))
m1 det(M),

where

det(M) = det

(
xIn1

−A(Σ1)− χA(Σ2)(x)BB
⊺ −B

−B⊺ xIm1

)
= det(xIm1

) det
(
xIn1 −A(Σ1)− χA(Σ2)(x)BB

⊺ −B(xIm1)
−1B⊺)

)
= det(xIm1) det

(
xIn1

−A(Σ1)− ( 1x + χA(Σ2)(x))BB
⊺
)

= det(xIm1
) det

(
xIn1 −A(Σ1)− ( 1x + χA(Σ2)(x))(r1In1 −A(Σ1))

)
= xm1

n1∏
i=1

(
(x− λi(Σ1)−

(1 + xχA(Σ2)(x))(r1 − λi(Σ1))

x

)
= xm1−n1

n1∏
i=1

(
x2 − (r1χA(Σ2)(x)− (1− χA(Σ2)(x))λi(Σ1))x− r1 + λi(Σ1)

)
,

and the proof is completed. □

As before, the net-regularity of Σ2 provides more information.

Theorem 5.18. Suppose that, under the assumptions of Theorem 5.17, Σ2 is s-
net-regular, with λk(Σ2) = s for some fixed k (1 ≤ k ≤ n2). The spectrum of
Σ1 ⊟SR Σ2 consists of

(i) 0 with multiplicity m1 − n1,
(ii) s with multiplicity m1 − n1,
(iii) λi(Σ2) with multiplicity n1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
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(iv) and the roots of x3 +(λi(Σ1)− s)x2 − (r1(n2 +1)+ (n2 + s− 1)λi(Σ1))x+
s(r1 − λi(Σ1)), for 1 ≤ i ≤ n1.

Proof. From the assumption on Σ2, we have χA(Σ2) =
n2

x−s . Now,

x2 − (r1χA(Σ2)(x)− (1− χA(Σ2)(x))λi(Σ1))x− r1 + λi(Σ1)

= x2 + (λi(Σ1)−
r1n2

x− s
−

n2λi(Σ1)

x− s
)x− r1 + λi(Σ1)

=
1

x− s

(
x2(x− s) + (λi(Σ1)(x− s)− r1n2 − n2λi(Σ1))x+ (λi(Σ1)− r1)(x− s)

)
=

1

x− s

(
x3 + (λi(Σ1)− s)x2 + (λi(Σ1)− n2λi(Σ1)− λi(Σ1)s− r1n2 − r1)x+ r1s− sλi(Σ1)

)
=

1

x− s

(
x3 + (λi(Σ1)− s)x2 + (λi(Σ1)(1− n2 − s)− r1(n2 + 1))x+ (r1 − λi(Σ1))s

)
,

which, in view of Theorem 5.17, leads to the desired result. □

It remains to compute the Laplacian characteristic polynomial.

Theorem 5.19. Let Σ1 be an r-regular signed graph with n1 vertices, m1 edges and
eigenvalues λ1(Σ1), λ2(Σ1), . . . , λn1

(Σ1). Let Σ2 be a signed graph with n2 vertices
and Laplacian eigenvalues µ1(Σ2), µ2(Σ2), . . . , µn2

(Σ2). The Laplacian character-
istic polynomial of Σ1 ⊟SR Σ2 is

ψΣ1⊟SRΣ2
(x) = (x− 2)m1

n2∏
i=1

(x− 2− µi(Σ2))
m1

·
n1∏
i=1

(
x− r1(1 + n2)− (1 + χL(Σ2)(x− 2) +

1

x− 2
)(r1 − λi(Σ1))

)
.

Proof. From

L(Σ1⊟SRΣ2) =

L(Σ1) + r1(1 + n2)In1
−B −B ⊗ J⊺

n2

−B⊺ 2Im1×m1
Om1×m1

⊗ J⊺
n2

−B⊺ ⊗ Jn2 Om1×m1 ⊗ Jn2 Im1 ⊗ (L(Σ2) + 2In2)


we compute

ψΣ1⊟SRΣ2
(x) =

n2∏
i=1

(x− 2− µi(Σ2))
m1 det(M),

where

det(M) = det

(
(x− r1(1 + n2))In1 − L(Σ1)− χL(Σ2)(x− 2)BB⊺ B

B⊺ (x− 2)Im1

)
= det((x− 2)Im1) det

(
(x− r1(1 + n2))In1 − (1 + χL(Σ2)(x− 2))L(Σ1)− L(Σ1)

x−2
)
)

= (x− 2)m1

n1∏
i=1

(
x− r1(1 + n2)− (1 + χL(Σ2)(x− 2) +

1

x− 2
)(r1 − λi(Σ1))

)
,

and the result follows. □

Finally, we take into account the co-regularity of Σ2.
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Theorem 5.20. Suppose that, under the assumptions of Theorem 5.19, Σ2 is a co-
regular signed graph of (r2, s), with µk(Σ2) = r2 − s for some fixed k (1 ≤ k ≤ n2).
The Laplacian spectrum of Σ1 ⊟SR Σ2 consists of

(i) 2 with multiplicity m1 − n1,
(ii) 2 + r2 − s with multiplicity m1 − n1,
(iii) 2 + µi(Σ2) with multiplicity m1, for i ∈ {1, 2, . . . , k − 1, k + 1, . . . , n2},
(iv) and the roots of x3− (4+2r1+ r2− s+ r1n2−λi(Σ1))x

2+((4+ r2− s)(2+
2r1 + r1n2 − λi(Σ1))− (n2 + 1)(r1 − λi(Σ1))− 4)x+ (2 + r2 − s)(λi(Σ1)−
(3 + 2n2)r1) + 2n2(r1 − λi(Σ1)), for 1 ≤ i ≤ n1.

Proof. The assumption on Σ2 gives χL(Σ2)(x− 2) = n2

x−2−r2+s . We compute

x − r1(1 + n2) −
(
1 + χL(Σ2)(x − 2) +

1

x − 2

)
(r1 − λi(Σ1))

= x − r1(1 + n2) −
(
1 +

n2

x − 2 − r2 + s
+

1

x − 2

)
(r1 − λi(Σ1))

=
1

(x − 2)(x − 2 − r2 + s)

(
x(x

2 − (4 + r2 − s)x + 2(2 + r2 − s)) − r1(1 + n2)(x
2 − (4 + r2 − s)x

+2(2 + r2 − s)) + (x
2 − (4 + r2 − s)x + 2(2 + r2 − s) + n2x − 2n2 + x − 2 − r2 + s)(r1 − λi(Σ1))

)
=

1

(x − 2)(x − 2 − r2 + s)

(
x
3 − (4 + r2 − s + r1(1 + n2) + (r1 − λi(Σ1)))x

2

+(2(2 + r2 − s) + r1(1 + n2)(4 + r2 − s) + (4 + r2 − s)(r1 − λi(Σ1) − (r1 − λi(Σ1))(1 + n2))x

−2r1(1 + n2)(2 + r2 − s) − 2(2 + r2 − s)(r1 − λi(Σ1)) + (2n2 + 2 + r2 − s)(r1 − λi(Σ1))
)

=
1

(x − 2)(x − 2 − r2 + s)

(
x
3 − (4 + 2r1 + r2 − s + r1n2 − λi(Σ1))x

2
+ ((4 + r2 − s)(2 + 2r1 + r1n2

−λi(Σ1)) − (n2 + 1)(r1 − λi(Σ1)) − 4)x + (2 + r2 − s)(λi(Σ1) − (3 + 2n2)r1) + 2n2(r1 − λi(Σ1))
)
,

and the result follows in view of Theorem 5.19. □
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[5] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, third edition, Johann Ambrosius
Barth, Heidelberg-Leipzig, 1995.

[6] K.A. Germina, S. Hameed, T. Zaslavsky, On products and line graphs of signed graphs, their

eigenvalues and energy, Linear Algebra Appl., 435 (2011), 2432–2450.

[7] I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35
(2011), 493–500.

[8] S. Hameed, V. Paul, K.A. Germina, On co-regular signed graphs, Australasian J. Combin.,
62 (2015), 8–17.

[9] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam-

bridge, 1991.
[10] Y. Hou, W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear

Algebra, 20 (2010), 586–594.

https://doi.org/10.33044/revuma.4483
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[15] Z. Stanić, A decomposition of signed graphs with two eigenvalues, Filomat, 34 (2020), 1949–

1957.
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Katona, J. Nešetřil (Eds.), Advances in Discrete Mathematics and Applications: Mysore
2008, Ramanujan Math. Soc., Mysore, 2010, pp. 207–229.

(Mir Riyaz ul Rashid) Department of Mathematics, University of Kashmir, Srinagar,

Kashmir, India

Email address: mirriyaz4097@gmail.com

(S. Pirzada) Department of Mathematics, University of Kashmir, Srinagar, Kashmir,

India
Email address: pirzadasd@kashmiruniversity.ac.in

(Tahir Shamsher)Department of Mathematics, University of Kashmir, Srinagar, Kash-

mir, India
Email address: tahir.maths.uok@gmail.com
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