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ABSTRACT

The Lévy distribution, alongside the Normal and Cauchy distribution, is one of the only three
stable distributions whose density can be obtained in a closed form. However, there are only a few
specific goodness-of-fit tests for the Lévy distribution. In this paper two novel classes of goodness-
of-fit tests for the Lévy distribution are proposed. Both tests are based on V -empirical Laplace
transforms. New tests are scale free under the null hypothesis, which makes them suitable for
testing the composite hypothesis. The finite sample and limiting properties of test statistics are
obtained. In addition, a generalization of the recent Bhati–Kattumannil goodness-of-fit test to the
Lévy distribution is considered. For assessing the quality of novel and competitor tests, the local
Bahadur efficiencies are computed, and a wide power study is conducted. Both criteria clearly
demonstrate the quality of the new tests. The applicability of the novel tests is demonstrated with
two real-data examples.
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1 Introduction

The Lévy distribution is one of the three stable distributions whose density has a closed form [39], given by

f(x;λ, µ) =

√
λ

2π

e
−

λ

2(x− µ)

(x− µ)
3
2

, x ≥ µ, λ > 0, µ ∈ R. (1)

That property makes it especially attractive in the scientific community, and consequently, it has many applications
(see, e.g. [10, 38, 35, 37]). Therefore, it has been of huge importance to develop methods for parameter estimation as
well as appropriate goodness-of-fit (GOF) tests.

Maximum likelihood estimation of λ when µ = 0 is covered in [3], while the case of both unknown parameters is
addressed in [1]. However, the derivation is unclear and the numerical calculation of MLE yields different estimates.
It is worth mentioning that there are results about the MLE for the parameters of stable distribution in the general case.
In [28] (see also [36]), one can read that this estimation procedure is computationally demanding and it requires the
maximum searching procedure to be carefully implemented. The method proposed in [20] avoids numerical optimiza-
tion, but asymptotic properties seem to be unknown. The method proposed in [16] produces consistent estimates, but
asymptotic properties of the estimator seem to be unknown as well. In practice, very often, the value of the location
parameter can be deduced based on the nature of the phenomena, and therefore might be assumed as a known fixed
value. Therefore in what follows, we assume that µ = 0 and the case of unknown µ is beyond the scope of this paper.
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For the testing GOF to Lévy distribution, one might use classical empirical distribution function (EDF)-based GOF
tests, as in [31, 18]. The usage of GOF tests for α-stable distributions for α = 0.5 is possible as well [32]. However,
as far as we know, the only specific GOF to Lévy distribution, is proposed in [6].

One of the primary goals of this paper is to fill in the existing gap in the literature with proposal of two new scale-free
classes of GOF tests. New tests belong to the group of the equidistribution-characterization-based tests which recently,
due to their nice properties, became very attractive. See, e.g., [24, 22, 8], for GOF tests for exponentiality, [30, 4] for
GOF tests for Pareto distribution, [27] for GOF tests for logistic distributions, etc.

The common approach to assess the quality of tests is to find their power against different alternatives. This approach,
for the GOF for the Lévy distribution, is used in [6]. Another approach, especially useful for a large sample com-
parison, is the notion of asymptotic efficiency. Bahadur asymptotic efficiency or its approximation is shown to be an
attractive option when dealing with tests with non-normal limiting properties (see, e.g., [25, 9, 21]) and is recently
used as one of the main criteria for the evaluation of novel proposals (see, e.g., [34, 11]). Therefore, we apply it for
the novel and the Bhati–Kattumanil tests. We emphasize that this criterion has not been used before for accessing the
quality of any GOF test to the Lévy distribution.

This paper is organized in the following manner. In Section 2 we revisit the test proposed in [6]. Section 3 is ded-
icated to the proposal of new classes of goodness-of-fit tests and their limiting properties. The asymptotic efficiency
of considered tests is derived in Section 4, while the results of the empirical power study are presented in Section 5.
An illustration of the usage of novel tests on real data is given in Section 6. All proofs are included in Appendix A.
Appendix B contains the generalization of Bhati–Kattumanil test, while used real-data sets and their visual represen-
tations are given in Appendix C. Appendix D contains the results related to the case of the median-based estimator,
while Appendix E contains empirical percentiles of the null distribution of some representatives of the proposed classes
of GOF test statistics.

We will denote with F (x;λ) the distribution function of the Lévy distribution with scale parameter λ. The density of
the Lévy distribution with scale parameter λ will be denoted with f(x;λ).The standard Lévy distribution is defined as
the Lévy distribution with scale parameter λ = 1. In the sequel, the distribution function (df) and density of standard
Lévy distribution will be denoted with F0(x) and f0(x) for the reasons of brevity.

2 On Bhati–Kattumanil test statistic

In [2], Ahsanullah and Nevzorov proved the following characterization of Lévy distribution.
Characterization 1. Suppose that X,Y and Z are independent and identically distributed random variables with
density f defined on (0,∞). Then

Z and
aX + bY(√
a+

√
b
)2 , 0 < a, b <∞

are identically distributed if and only if f is a density of Lévy distribution with arbitrary scale parameter λ.

The characterization is based upon the stability of the Lévy distribution [12]. In a view of Characterization 1, for
a = b = 1, Bhati and Kattumannil in [6] proposed the test statistic

T ∗n =

∫
R+

( 1(
n
2

) ∑
j<i

I
{Xi +Xj

4
≤ t
}
− Fn(t)

)
dFn(t),

which is an integrated difference between U-empirical df of X and X+Y
4 . This statistic is a hybrid U-statistic, asymp-

totically equivalent to the non-degenerate U-statistic

Tn =
1(
n
3

) ∑
k<j<i

I
{Xi +Xj

4
≤ Xk

}
− 1

2
.

They showed that, under H0, the distribution
√
nTn converged to a centred Gaussian distribution with variance equal

to

σ2
T = V ar

( ∞∫
0

2
(
1− F0

(X + y

4

))
f0(y)dy + F0(X)

)
. (2)

Since they were not being able to calculate asymptotic variance, they proceeded with considering empirical jackknife
and jackknife-adjusted versions of Tn. The fact that the test statistic is scale free under the null hypothesis, as it will
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be shown later, significantly simplifies testing procedures and the usage of the aforementioned resampling procedures
might be skipped.

Our numerical calculation yields σ2
T = 0.0235051.

In the rest of this paper, we will denote the statistic Tn with Ī [1,1]n , and its generalization for arbitrary a, b > 0,
presented in Appendix B, with Ī [a,b]n . Since the properties of Ī [a,b]n aren’t significantly different than those of the
a = b = 1, we present them in Appendix B.

3 New classes of goodness-of-fit tests

Equality in distribution of two random variables can also be expressed through the equality of their Laplace transforms.
The test statistic might be constructed as a function of the difference among corresponding U- or V-empirical Laplace
transforms. This approach has been used for the first time in [23], and was further explored in [8, 9]. Taking into
account the discussions from mentioned papers, in a view of Characterization 1, we propose new classes of test
statistics J = {Jn,a, a > 0} and R = {Rn,a, a > 0}, where

Jn,a = sup
t>0

∣∣∣( 1

n2

∑
i,j

e−
t(Yi+Yj)

4 − 1

n

∑
i

e−tYi

)
e−att

3
2

∣∣∣ (3)

= sup
t∈[0,1]

∣∣∣( 1

n2

∑
i,j

t
Yi+Yj

4 − 1

n

∑
i

tYi

)
ta
(
− log t

) 3
2

∣∣∣,
Rn,a =

∫
R+

( 1
n

∑
i

e−tYi − 1

n2

∑
i,j

e−
t(Yi+Yj)

4

)
e−att

3
2 dt (4)

=
3
√
π

4n2

∑
i,j

(
1(

a+
Yi+Yj

4

) 5
2

− 1

2
(
a+ Yi

) 5
2

− 1

2
(
a+ Yj

) 5
2

)
,

and Yk = Xk

λ̂
and λ̂ is MLE of λ, given by

λ̂ =
n

n∑
k=1

1
Xk

. (5)

Note that one might also opt for the median-based estimator (MBE):

λ̂MBE := 2(erf−1(1/2))2x̃,

where x̃ is the sample median, and where

erf(x) =
2√
π

∞∫
x

e−t
2

dt

denotes the complementary error function. The power study for this approach is presented in Appendix D. We will
assume λ̂ is the MLE in the rest of this paper.

Here the function e−att3/2 plays a role of weight function. Therefore, test statistics might be modified with the
selection of another weight function. Since, under H0, the values of test statistics should be small, we take large
values of Jn,a and |Rn,a| to be significant.

In the next two theorems, we present limiting distributions of
√
nJn,a and

√
nRn,a under H0.

Theorem 1. Let a ≥ 1 and X1, X2, . . . , Xn be i.i.d random variables distributed according to the Lévy law with
scale parameter λ. Then the following holds:

√
nJn,a

D→ sup
t∈[0,1]

| ξ(t) |,

where ξ(t) is a centred Gaussian random process, having the following covariance function:

K(s, t) = sata(− log(s))3/2(− log(t))3/2
(
− e−

√
2
(√
− log(s)+

√
(− log(t))

)
− 2e−

√
−2(log(s)− 1

4 log(t))+

√
− log(t)

2

− 2e−
√

2(− log(t)− 1
4 log(s))+

√
− log(s)

2 + 4e
−
√

− log(st)+
√

− log(s)+
√

− log(t)
√

2 + e
√
−2 log(st)

)
.
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Empirical 95th percentiles of
√
nJn,a, presented in Table 11 and Table 12 in Appendix E are in concordance with

Theorem 1.

Remark 1. Let X1, X2..., Xn be i.i.d. random variables distributed as X ∈ FA and let FA be a fixed alterna-
tive distribution such that E

(
1
X

)2
< ∞. Denote with ζ = 1

E
(

1
X

) . The law of large numbers along with the

continuous mapping theorem gives us λ̂ = n
n∑

i=1

1
Xi

P−−−−→
n→∞

ζ. Next, applying the law of large numbers for U-

and V-statistics with estimated parameters [13], and similar arguments as in the proof of Lemma 1 we have that
Jn

P→ supt∈[0,1] |(E(t
X1
ζ ) − E(t

X1+X2
4ζ ))ta(− log t)

3
2 | which is equal to 0 if and only if X1

ζ and X1+X2

4ζ are equally
distributed, i.e. iff the null hypothesis holds. From this, consistency of Jn,a follows.
Theorem 2. Let a ≥ 1 and X1, X2, . . . , Xn be i.i.d random variables distributed according to the Lévy law with
scale parameter λ. Then, for every a > 0, the asymptotic distribution of

√
nRn,a as n → ∞ is normal N (0, σ2

R(a))
where σ2

R(a) = 4Eζ(X; a)2 and ζ(x; a) is defined in (15).

The values of σ2
R(a) cannot be calculated analytically. However, it is possible to calculate them numerically. Some

values of σ2
R(a) are presented in Table 1. Therefore, the testing procedure can also be done using the standardized test

statistic

R̃n,a =
√
n
Rn,a
σR(a)

which, for large samples, under H0, can be approximated with standard normal distribution.

Table 1: Values of σ2
R(a) for different values of a.

σ2
R(0.2) σ2

R(0.5) σ2
R(1) σ2

R(2) σ2
R(5)

4.58804 0.2672024 0.02068868 0.001194688 1.925016 · 10−5

Empirical 95th percentiles of
√
n|Rn,a|, presented in Table 13 and Table 14 in Appendix E, are in concordance with

Theorem 2.

4 Asymptotic efficiency

In recent times, the Bahadur efficiency has become a very popular tool for stochastic comparison of test performance
in the large sample case. In this section we make a brief review of Bahadur theory. For more details, we refer to [25].

Let G = {g(x; θ), θ > 0} be a family of alternatives density functions, such that g(x; 0) has the Lévy distribution with
arbitrary scale parameter, and

∫
R+

1
x2 g(x; θ) < ∞ for θ in the neighbourhood of 0, and some additional regularity

conditions for U-statistics with non-degenerate kernels hold [26, 21]. Let also {Tn} and {Vn} be two sequences of
test statistic that we want to compare.

Then for any alternative distribution from G the relative Bahadur efficiency of the {Tn} with respect to {Vn} can be
expressed as

e(T,V )(θ) =
cT (θ)

cV (θ)
,

where cT (θ) and cV (θ) are the Bahadur exact slopes, functions proportional to the exponential rate of decrease of each
test size when the sample size increases. It is usually assumed that θ belongs to the neighbourhood of 0, and in such
cases, we refer to the local relative Bahadur efficiency of considered sequences of test statistics.

It is well known that for the Bahadur slope function Bahadur–Ragavacharri inequality holds [33], that is

cT (θ) ≤ 2K(θ),

where K(θ) is the minimal Kullback–Leibler distance from the alternative to the class of null hypotheses, i.e. in the
case of our null hypothesis

K(θ) = inf
λ>0

K(θ;λ) = inf
λ>0

∫
R+

log
( g(x; θ)
f(x;λ)

)
g(x; θ)dx.
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This justifies the definition of the local absolute Bahadur efficiency by

eff(T ) = lim
θ→0

cT (θ)

2K(θ)
. (6)

If the sequence {Tn} of test statistics under the alternative converges in probability to some finite function b(θ) > 0
and the limit

lim
n←∞

n−1 logPH0
(Tn ≥ t) = −fLD(t)

exists for any t in an open interval I , on which fLD is continuous and {b(θ), θ > 0} ⊂ I then the Bahadur exact slope
is equal to

cT (θ) = 2fLD(b(θ)). (7)

However, in many cases, the calculation of the large deviation function, and consequently the Bahadur slope, turns out
to be almost an insurmountable obstacle.

If the function (4) cannot be calculated for θ approaching zero, instead of calculating Bahadur slope we could calculate
approximate Bahadur slope c∗T (θ) which usually locally coincides with the exact one. For the calculation of the
approximate slope, we do not need the tail behaviour of d.f. of statistics Tn but the tail behaviour of its limiting
distribution, which is often easier to calculate. In particular, if the limiting distribution function of Tn, under H0, is
FT , whose tail behaviour is given by log(1 − FT (t)) = −a∗T t

2

2 (1 + o(1)), where aT is the positive real number and
o(1) → 0 when t→ ∞, and the limit in probability of Tn√

n
is b∗T (θ) > 0, then

c∗T (θ) = a∗T (b
∗
T (θ))

2.

In addition, the local (approximate) slope of likelihood ratio tests is equal to 2K(θ) [5], therefore it is reasonable to
approximate (6) by replacing cT (θ) with c∗T (θ).

In the next theorem, we provide the behaviour of 2K(θ) when θ approaches zero.
Theorem 3. For a given alternative density g(x; θ) whose distribution belongs to G, such that g(x; 0) is given by (1),
it holds

2K(θ) =

(√
2π

λ

∫
R+

(g′(x; θ))2e−
λ
2xx−

3
2 dx− λ

2

( ∫
R+

g′(x; θ)

x
dx
)2)

· θ2 + o(θ2), θ → 0.

In the following theorems, we present Bahadur exact and approximate slopes of Bhati–Kattumanil statistic and our
statistics, respectively.

Theorem 4. For an alternative g(x; θ) from G, the Bahadur exact slope of the statistic I [1,1]n is

cI(θ) =

(
3
∫
R+ φ(x)g

′
θ(x; 0)dx

)2
σ2
T

· θ2 + o(θ2), θ → 0,

where

φ(x) =

∞∫
0

2
(
1− F

(x+ y

4
;λ
))
f(y;λ)dy + F (x;λ).

Proof of Theorem 4. The proof follows directly from [26, Theorem 3].

Theorem 5. For an alternative g(x; θ) from G, the Bahadur approximate slope of the statistic Jn,a is equal to

cJ(θ) =
supt∈[0,1]

(
2|
∫
R+ ψ(x; t, a)g

′
θ(x; 0)dx|

)2
supt∈[0,1] σ

2(t)
· θ2 + o(θ2), (8)

where σ2(t) = supt∈[0,1]K(t, t), and

ψ(x; t, a) =
1

2
ta(− log(t))3/2

(
− 2t

x
4 e
−
√

− log(t)
√

2 + tx + e−
√
2
√
− log(t)

)
.

5



Theorem 6. For an alternative g(x; θ) from G, the Bahadur exact slope of the statistic Rn,a is

cR(θ) =

(
2
∫
R+ ζ(x)g

′
θ(x; 0)dx

)2
σ2
R(a)

· θ2 + o(θ2), θ → 0,

where ζ is the first projection of the symmetric kernel Z given by

ζ(x; a) = E(Z(X1, X2; a)|X1 = x).

The expression for ζ is cumbersome and the exact form can be found in Appendix, (see 15).

We consider the following classes of alternatives that belong to family G:

• a mixture of the standard Lévy distribution and the Lévy distribution with scale parameter λ ̸= 1, with
density:

g
[λ]
1 (x; θ) = (1− θ)f0(x) +

θ

λ
f0
(x
λ

)
, x > 0, θ ∈ (0, 1);

• a Lehmann alternative with density

g2(x; θ) = (1 + θ)F0(x)
θf0(x), x > 0, θ > 0;

• a contamination alternative with g2, and parameter β with density

g
[β]
3 (x; θ) = (1− θ)f0(x)+θβF

β−1
0 (x)f0(x), x > 0, θ ∈ (0, 1), β > 0;

• a first Ley–Paindaveine alternative [17] with density

g4(x; θ) = (1 + θF0(x))f0(x)e
−θ(1−F0(x)), x > 0, θ > 0;

• a second Ley–Paindaveine alternative [17] with density

g5(x; θ) = f0(x)(1− θπ cos
(
πF0(x)

)
), x > 0, θ ∈ [0, π−1].

In what follows we present a calculation of the local approximate Bahadur efficiency of J1 and alternative g2(x; θ),
while results for all considered statistics and alternatives are presented in Table 2.

From Theorem 3 we obtain

2K(θ) =

(∫
R+

e−
1
2x

(
log
(
erf
(

1√
2
√
x

))
+ 1
)2

√
2πx3/2

dx− 1

2

∫
R+

e−
1
2x

(
log
(
erf
(

1√
2
√
x

))
+ 1
)

√
2πx5/2

dx

)
· θ2 + o(θ2)

= 0.0233005θ2 + o(θ2), θ → 0.

Next, from Theorem 5, it follows that

cJ(θ) =
4 supt∈[0,1]A(t)

supt∈[0,1] σ
2(t)

θ2 + o(θ2) =
4 supt∈[0,1]

(
|
∫
R+ ψ(x; t, a)g

′
θ(x; 0)dx|

)2
supt∈[0,1] σ

2(t)
· θ2 + o(θ2).

We have that

sup
t∈[0,1]

A(t) = sup
t∈[0,1]

( ∫
R+

ta(− log(t))3/2
(
log
(
erf
( 1√

2
√
y

))
+ 1
)
×

e−
√
2
√
− log(t)− 1

2y
(
− 2ty/4e

√
− log(t)
√

2 + tye
√
2
√
− log(t) + 1

)
2
√
2πy3/2

dy
)2

≈ 0.0000149667,

We highlight that the maximum of the function A(t) (presented in Figure 1) is calculated numerically.
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Figure 1: Plot of the A(t).

Figure 2: Plot of σ2(t).

Further, supt∈[0,1] σ
2(t) becomes

sup
t∈[0,1]

(
−t2

(
− 4e

− 2

√
− log(t5/4)+

√
− log(t)

√
2 +4e

−
√

− log(t2)+2
√

− log(t)
√

2 +e−
√
−2 log(t2)−e−2

√
−2 log(t)

)
log3(t)

≈ 0.00388889.

and the calculation yields eff(J1) ≈ 0.66. The function σ2(t) is presented in Figure 2.

The results of our study are displayed in Table 2. The tuning parameter a significantly affects the efficiency of Rn,a
and Jn,a. In all considered cases, the Bahadur efficiency of Jn,a is a decreasing function of a. This is not the case for
the statistic Rn,a. However, it is notable that the maximal efficiency is attained in the neighbourhood of a = 1. The
values of the local approximate Bahadur relative efficiencies for the generalized Bhati–Kattumanil statistic are given
in Appendix B. We can see that the new statistics outperform the Bhati–Kattumanil one, and that the statistic Rn,a
dominates the other two in terms of local approximate Bahadur efficiencies.

Remark 2. It can be shown that for the test statistic I [1,1] considered in this paper approximate and exact slopes
coincide locally, and consequently, the approximate and exact Bahadur relative efficiencies w.r.t. LR test locally
coincide because the approximate Bahadur slope for LR test equals to 2K(θ), as we have noted earlier.

5 Power study

In this section, we explore finite sample properties of considered test statistics. In particular, we estimate the power of
the tests, when the level of significance is α = 0.05, using Monte Carlo method with N = 10000 replications. The
goal of this section is to compare JEL and AJEL approaches from [6] to the classical approach and to determine the
empirical powers of new tests. The p-values are obtained utilizing the Monte Carlo approach.

The supremum in the calculation of the Jn,a is obtained using grid search on 1000 equidistant points on [0, 1].

Other tests considered in the power study are:

7



Table 2: Local approximate Bahadur relative efficiencies of I [1,1], Ja and Ra with respect to LR test

g
[10]
1 g2 g

[3]
3 g4 g5

I [1,1] 0.59 0.54 0.73 0.53 0.41
J1 0.91 0.66 0.79 0.68 0.69
J2 0.81 0.54 0.71 0.54 0.49
J5 0.56 0.36 0.52 0.35 0.25
J10 0.35 0.24 0.37 0.23 0.13
R0.2 0.53 0.79 0.61 0.80 0.86
R0.5 0.80 0.86 0.82 0.90 0.97
R1 0.94 0.81 0.89 0.84 0.87
R2 0.93 0.69 0.84 0.70 0.65
R5 0.70 0.48 0.66 0.46 0.35

• Lilliefors-corrected Kolmogorov–Smirnov (KS) test statistic:

KSn = sup
x∈R+

|Fn(x)− F (x; λ̂)|;

• Lilliefors-corrected Cramer–von Mises (CVM) test statistic:

CVM2
n =

∫
R+

(Fn(x)− F (x; λ̂))2dF (x; λ̂);

• Lilliefors-corrected Anderson–Darling (AD) test statistic:

AD2
n = n

∫
R+

(Fn(x)− F (x; λ̂))2

F (x; λ̂)(1− F (x; λ̂))
dF (x; λ̂);

• Na
1 test statistic, considered in [32]:

Na
1 =

√
n · σ̂

2
x(5%, 25%)− σ̂2

x(75%, 95%)

σ̂2
x(5%, 95%)

;

• N b
1 test statistic, considered in [32]:

N b
1 =

√
n · 2.00 · σ̂

2
x(5%, 25%)− 1.01 · σ̂2

x(75%, 95%)

σ̂2
x(5%, 95%)

,

where σ̂2
x denotes the sample quantile conditional variance estimator [32]:

σ̂2
x(a, b) =

1

[nb]− [na]

[nb]∑
i=[na]+1

(
X(i) − µ̂X(a, b)

)2
,

and X(i) is the ith-order statistic, and µ̂X(a, b) = 1
[nb]−[na]

∑[nb]
i=[na]+1X(i) is the conditional sample mean.

In the case of Lilliefors-corrected classical tests large values are taken to be significant, while in the case of both small
and large values of Na

1 and N b
1 , the null hypothesis is rejected.

We consider the following classes of alternative distributions:

• Burr distribution, denoted by Burr(a, b, c), with a density

gB(x; a, b, c) = cb

(
x
a

)b−1
a
(
1 +

(
x
a

)b)c+1
, x > 0, a > 0, b > 0, c > 0;

• Chen distribution, denoted by Chen(ν, λ), with a density

gC(x; ν, λ) = νλxλ−1eν(1−e
xλ

)+xλ

, x > 0, ν > 0, λ > 0;

8



• Fréchet distribution, denoted by FR(a, b), with a density

gFR(x; a, b) =
a

b

(x
b

)−(a+1)

exp

(
−
(x
b

)−a)
, x > 0, a > 0, b > 0;

• Gamma distribution, denoted by Γ(a, b), with a density

gΓ(x; a, b) =
xa−1bae−bx

Γ(a)
, x > 0, a > 0, b > 0;

• log-logistic distribution, denoted by LL(a, b), with a density

gLL(x; a, b) =
a(xb )

a

x[1 + a(xb )
a]2

, x > 0, a > 0, b > 0;

• log-normal distribution, denoted by LN(a, b), with a density

gLN (x; a, b) =
1√

(2π)bx
e

−((log x−a)2

2b2 , x > 0, a ∈ R, b > 0;

• χ2 distribution, denoted by χ2
n, with a density

gχ2(x;n) =
1

2
n
2 Γ
(
n
2

)xn
2−1e−

x
2 , x > 0, n ∈ N;

• half-normal distribution, denoted by HN(a, b), with a density

gHN (x; a, b) =
e−

(x−a)2

2b2

√
2πb2

+
e−

(x+a)2

2b2

√
2πb2

, x > a, a ∈ R, b > 0;

• shifted log-gamma distribution, denoted by LG(a, b), with a density

gLG(x; a, b) =
ba

Γ(a)

(log(x+ 1))a−1

(x+ 1)b+1
, x > 0, a > 0, b > 0;

• Weibull distribution, denoted by W(a, b) with a density

gW (x; a, b) =
a

b

(x
b

)a−1
e(−

x
b )

a

, x > 0, a > 0, b > 0;

The majority of these alternatives are considered in [6].
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Results are presented in Table 3. For the sake of brevity, sample sizes are dropped from labels whenever they can be
clearly determined. When the tests are compared, it can be seen that no new test is preferable among the others. That
is in concordance with [14], which asserts that the global power function of any nonparametric test is flat on balls of
alternatives except for alternatives coming from a finite-dimensional subspace.

From Table 3, it can be seen that JEL and AJEL approaches, proposed in [6], are less powerful than classical, whenever
the testing is utilized via the original version of |I [1,1]|. It is also notable that the power of Ra is significantly affected
by the value of tuning parameter a and alternative distribution. Having all results in mind we recommend the value in
the interval [0.5, 1]. The behaviour of Ja is less sensitive to the change of parameter a. In almost all cases both Ra
and Ja dominate JEL and AJEL competitors. It can be concluded that novel tests exhibit better performance when
compared with the tests Na

1 and N b
1 , proposed in [32]. When compared to EDF-based tests, in some cases novel tests

show better performance, while in other cases they are comparable.

6 Real data examples

In this section, we apply the novel tests presented in this paper on two real data sets considered in [6]. The data sets
and their visual representations are provided in Appendix C.

The first one (Rainfall) contains the weighted rainfall data for the month of January in India. Although there is no
objective reason for modelling data with such a shape with the Lévy distribution, in [6], authors concluded that the
data follows the Lévy distribution [6, p. 10]. However, all tests we consider report p-values smaller than 0.05, which
clearly implies that Lévy distribution is not a justified choice.

The second data set (Hillside) consists of the well yields near Bel Air, Hartford county, Maryland. The p-values are
presented in Table 4 (see also Table 9). From the Figure 4 presented in Appendix C, it can be deduced that the
empirical density of the Hillside data is, among the distributions studied in the simulation study, closest to LL(1, 2).
Having in mind R0,2 that is quite powerful against this alternative, we cannot conclude that the Lévy distribution is
the appropriate model for the Hillside data.

Table 4: p-values of novel tests - ML estimate
R0.2 R0.5 R1 R2 R5

Rainfall 0.014 0 0 0 0
Hillside 0.004 0.006 0.024 0.106 0.494

J1 J2 J5 J10

Rainfall 0 0 0 0
Hillside 0.021 0.07 0.281 0.622

7 Concluding remarks

In this paper, we proposed two new goodness-of-fit tests for the Lévy distribution with arbitrary scale parameter and
a generalization of an existing one. The asymptotic distributions of the proposed tests were derived and the local
approximate Bahadur efficiencies of the proposed tests and the generalized Bhati–Kattumanil test were compared.
Obtained empirical powers also clearly indicate the dominance over other specific goodness-of-fit tests for the Lévy
distribution.

We end our work by identifying some open research questions. From the results of our empirical study presented in
Section 5 and Appendix D, we note that the test’s powers are sensitive to the choice of the estimator of the scale pa-
rameter. Therefore it is of interest to further analyse the small sample behaviour of our tests under different estimators,
not included in the study. In addition, a prominent direction of further research would be to look for the adaptation of
proposed tests when both location and scale parameters are unknown. This case is even more challenging for devel-
oping asymptotic properties of test statistics under the null and fixed alternative as well. It would be also interesting
to look for tests’ behaviour under contiguous alternatives.
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Appendix A – Proofs

Proof of Theorem 1. It is easy to see that, under H0, the distribution of Jn,a does not depend on λ which justifies the
usage of the introduced class for testing the composite hypothesis. Therefore, when deriving the limiting distribution
we may suppose that λ = 1. It should be noted that the statistic (3) can be represented as

Jn,a = sup
t∈[0,1]

|Vn(t; a, λ̂)|,

where, for each t and a,

Vn(t; a, λ̂) =
1

n2

n∑
i1,i2

Ψ(Xi1 , Xi2 ; t, a, λ̂),

is a V -statistic with the estimated parameter λ, with symmetric kernel Ψ(·; t, a).
Applying the Taylor expansion, we get

√
nVn(t; a, λ̂) =

√
nVn(t; a, 1) +

√
n(λ̂− 1)

∂Vn(t; a, ν)

∂ν

∣∣
ν=1

+Rn(t), (9)

where

Rn(t) =

√
n

2
(λ̂− 1)2

∂2Vn(t; a, ν)

∂ν2

∣∣∣
ν=λ1

.

and λ1 lies between 1 and λ̂. We need to establish that sup
t∈[0,1]

|Rn(t)| is an oP (1) sequence. It can be shown that

√
n(λ̂− 1)

n→∞−−−−→ N (0, 2), (10)

and that λ̂ is a consistent estimator of 1 (see [3]). From (10) and from Slutsky’s theorem we get
√
n(λ̂− 1)2

P−→ 0.

We have that

∂2Ψ(X,Y ; t, a, ν)

∂ν2

∣∣∣
ν=λ1

=
ta(− log(t))5/2

16λ41
(−8Xt

X
λ1 (2λ1 +X log(t))− 8Y t

Y
λ1 (2λ1 + Y log(t))

+ (X + Y )t
X+Y
4λ1 (8λ1 + log(t)(X + Y ))).

If we denote with

g(t;X) =
8Xt

X
λ1 (2λ1 +X log(t))

16λ41
,

then the following holds

|g(t;X)| ≤ 1

λ1

(∣∣∣Xt X
λ1

λ21

∣∣∣+ ∣∣∣X2t
X
λ1 log(t)

2λ31

∣∣∣).
12



We have that ∣∣∣Xt X
λ1

λ21

∣∣∣ = Xt
X
λ1

λ21
=
U2eU log(t)

X
, U =

X

λ1

and noting that log(t) < 0, we obtain that for every fixed t function h(u) = u2eu log(t) attains its maximum at the
point u = − 2

log(t) . Therefore,

Xt
X
λ1

λ21
≤ 4e−2(− log(t))−2

X
. (11)

Similarly, we get that ∣∣∣X2t
X
λ1 log(t)

2λ31

∣∣∣ ≤ 27e−3(− log(t))−2

2X
. (12)

Since λ1 ≥ min(1, λ̂), we get that 1
λ1

≤ max
(
1, 1

λ̂

)
. From (11) and (12) we conclude that

|g(t;X)| ≤
(4e+ 13.5)max

(
1, 1

λ̂

)
Xe3(− log(t))2

. (13)

Function ω(t; a) = ta(− log(t))
1
2 attains its maximum as a continuous function of t on a compact set. Applying (13)

three times, we get∣∣∣∂2Ψ(X,Y ; t, a, ν)

∂ν2

∣∣∣
ν=λ1

∣∣∣ = ta(− log(t))5/2|2g
(
t;
X + Y

4

)
− g(t;X)− g(t;Y ))|

≤ ta(− log(t))5/2(2
∣∣g(t; X + Y

4

)∣∣+ |g(t;X)|+ |g(t;Y ))| ≤ max
t∈[0,1]

|ta(− log(t))
1
2 |(4e+ 13.5)e−3×

max
(
1,

1

λ̂

)( 8

X + Y
+

1

X
+

1

Y

)
= C(a)max

(
1,

1

λ̂

)( 8

X + Y
+

1

X
+

1

Y

)
.

Note that that C(a), 1
n

∑
i

1
Xi

, and 1
n2

∑
i,j

1
Xi+Xj

are OP (1) sequences.

Using the continuous mapping theorem, we get max
(
1, 1

λ̂

)
P−→ 1. Using the law of large numbers for V− statistics,

the triangle inequality and Slutsky’s theorem, we have that

sup
t∈[0,1]

∣∣∣∂2Vn(t; a, ν)
∂ν2

∣∣∣ ≤ sup
t∈[0,1]

1

n2

n∑
i1,i2

∣∣∣∂2Ψ(Xi1 , Xi2 ; t, a, ν)

∂ν2

∣∣∣ ≤
C(a)max

(
1,

1

λ̂

) 1

n2

n∑
i1,i2

( 8

Xi1 +Xi2

+
1

Xi1

+
1

Xi2

)
P−→ C(a)E

( 8

X + Y
+

1

X
+

1

Y

)
= 4C(a).

We have established that sup
t∈[0,1]

∣∣∣∂2Vn(t;a,ν)
∂ν2

∣∣∣ is an OP (1) sequence. Slutsky’s theorem, along with the fact that
√
n(λ̂− 1)2 is an oP (1) sequence establishes that sup

t∈[0,1]
|Rn(t)| is an oP (1) sequence.

Using the law of large numbers for V− statistics once more, we have that

∂Vn(t; a, ν)

∂ν

∣∣∣
ν=1

P→ ta(log t)
3
2E
(1
2
X1t

X1 +
1

2
X2t

X2 − 1

4
(X1 +X2)t

1
4 (X1+X2)

)
= 0.

The statement of the convergence sup
t∈[0,1]

∣∣∣∂Vn(t;a,ν)
∂ν

∣∣
ν=1

∣∣∣ P→ 0, is formalized in the following lemma.

Lemma 1. The limit in probability under H0 of sup
t∈[0,1]

∣∣∣∂Vn(t;a,ν)
∂ν

∣∣
ν=1

∣∣∣, as n→ ∞, equals 0.

Proof. Assume a ≥ 1. Let’s focus on the derivative of the kernel. The following holds:

∂Ψ(X1, X2; t, a, ν)

∂ν

∣∣∣
ν=1

=
ta(− log(t))5/2

(
2X1t

X1 + 2X2t
X2 − (X1 +X2)t

X1+X2
4

)
4

.

13



Denote with

fn(t) =
1

n2

∑
i,j

∂Ψ(X1, X2; t, a, ν)

∂ν

∣∣∣
ν=1

=
1

n2

∑
i,j

ta(− log(t))5/2
(
2X1t

X1 + 2X2t
X2 − (X1 +X2)t

X1+X2
4

)
4

.

Function fn is continuous (as a function of t) and has a continuous derivative. Moreover, for every t ∈ [0, 1] we
have that Efn(t) = 0. Denote with SND = {t : f ′n(t) ≥ 0}, SNI = {t : f ′n(t) ≤ 0} the sets on which fn is
non-decreasing and non-increasing respectively. The continuity of f ′n(t) ensures that both sets are closed subsets of
the compact set [0, 1]. Therefore, SND and SNI are compact. Note that SND ∪ SNI = [0, 1].

From the subadditivity of the supremum, we have that
sup
t∈[0,1]

|fn(t)| ≤ sup
t∈SND

|fn(t)|+ sup
t∈SNI

|fn(t)|

From the law of large numbers and continuity of the modulus, we have that for every t ∈ [0, 1]:

|fn(t)− Efn(t)| = |fn(t)|
P−→ 0.

Function fn(t) is non-decreasing for every t ∈ SND. By applying Lemma 1 from [29], we obtain

sup
t∈SND

|fn(t)|
P−→ 0.

Similarly, function fn(t) is non-increasing for every t ∈ SNI . By applying Lemma 1 from [29], we obtain

sup
t∈SND

|fn(t)|
P−→ 0.

Therefore, sup
t∈[0,1]

∣∣∣∂Vn(t;a,ν)
∂ν

∣∣
ν=1

∣∣∣ ≤ sup
t∈SND

|fn(t)|+ sup
t∈SNI

|fn(t)| → 0. The result then follows.

Using Lemma 1 and using Slutsky’s theorem, we conclude that under H0
√
nVn(t; a, λ̂) and

√
nVn(t; a, 1) are

asymptotically equally distributed.

The distribution of
√
nVn(t; a, 1) can be obtained from Hoeffding theorem for non-degenerate U- (V-) statistics (see,

e.g., [15]).

The first projection of the kernel Ψ(·; t, a) is given by

ψ(x; t, a) = E(Ψ(X1, X2; t, a|X1 = x)) =
1

2
ta(− log(t))3/2

(
− 2t

x
4 e
−
√

− log(t)
√

2 + tx + e−
√
2
√
− log(t)

)
.

This function is obviously non-constant. In addition, it can be shown that Eψ(X; t, a)2 < ∞ for every t ∈ [0, 1].
Hence Vn(t; a, 1) is non-degenerate. Therefore, from the Hoeffding theorem and the multivariate central limit theorem,
it follows that the finite-dimensional asymptotic distributions of

√
nVn(t; a, 1) are normal. Hence, it suffices to show

that the sequence {
√
nVn(t; a, 1)} is tight. For the sake of brevity, we will denote Vn(t; a, 1) with Vn(t; a) and we

will drop the argument for λ in the following text whenever it is equal to 1. The tightness then follows from [7,
Theorem 12.3].

Let us denote
Vn(t; a) =

1

n2

∑
i,j

Ψ(Xi, Xj ; t, a),

where Ψ denotes the symmetric kernel of the V -statistic.

To show tightness, we observe that

Vn(t+ u; a)− Vn(t; a) =
1

n2

∑
i,j

(
Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a)

)
.

Therefore

E
(√

nVn(t+ u; a)−
√
nVn(t; a)

)2
= E

( 1

n3

∑
i,j,k,l

(Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a))(Ψ(Xk, Xl; t+ u, a)−Ψ(Xk, Xl; t, a))
)
.

Several different cases occur:
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• If the indices i, j, k, l are different, the independence of the random variables Xi, Xk, Xj , Xl and the charac-
terization give us

E
( 1

n3

∑
i̸=j ̸=k ̸=l

(Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a))(Ψ(Xk, Xl; t+ u, a)−Ψ(Xk, Xl; t, a))
)
= 0,

and we have 4!
(
n
4

)
such cases.

• If three out of four indices are different, then two cases can occur:

1. If i = j, then the independence and characterization give us

E
( 1

n3

∑
i ̸=k ̸=l

(Ψ(Xi, Xi; t+ u, a)−Ψ(Xi, Xi; t, a))(Ψ(Xk, Xl; t+ u, a)−Ψ(Xk, Xl; t, a))
)
= 0,

and we have 8n
(
n−1
2

)
= 4n(n− 1)(n− 2) such cases.

2. If without loss of generality i = k, then we have that

E
( 1

n3

∑
i̸=j ̸=l

(Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a)) (Ψ(Xi, Xl; t+ u, a)−Ψ(Xi, Xl; t, a))
)
̸= 0.

Since we have 8n
(
n−1
2

)
= 4n(n− 1)(n− 2) such cases, the sum above reduces to

4n(n− 1)(n− 2)

n3
E
(
(Ψ(X1, X2; t+ u, a)−Ψ(X1, X2; t, a))(Ψ(X1, X3; t+ u, a)−Ψ(X1, X3; t, a))

)
=

4(n− 1)(n− 2)

n2
E(ψ(X1; t+ u, a)− ψ(X1; t, a))

2,

where ψ(X; t, a) denotes the first projection of the kernel Ψ.

• If two out of four indices are different, then we have three different cases.

1. If i = k and j = l, we have that

E
( 1

n3

∑
i ̸=j

(Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a))
2
)
,

and since it reduces to

4

n3

(
n

2

)
E(Ψ(X1, X2; t+ u, a)−Ψ(X1, X2; t, a))

2 =

2(n− 1)

n2
E(Ψ(X1, X2; t+ u, a)−Ψ(X1, X2; t, a))

2 n→∞−→ 0,

we conclude that this part is asymptotically negligible.
2. If i = j and k = l, we have that

E
( 1

n3

∑
i ̸=j

(Ψ(Xi, Xi; t+ u, a)−Ψ(Xi, Xi; t, a))(Ψ(Xj , Xj ; t+ u, a)−Ψ(Xj , Xj ; t, a))
)

=
2n(n− 1)

n3
E(Ψ(X1, X1; t+ u, a)−Ψ(X1, X1; t, a))

2,

and since
E(Ψ(X1, X1; t+ u, a)−Ψ(X1, X1; t, a))

2 <∞,

the asymptotic negligence follows.
3. If i = k = l ̸= j, then we have that the independence and characterization give us

E
( 1

n3

∑
i ̸=j

(Ψ(Xi, Xi; t+ u, a)−Ψ(Xi, Xi; t, a))(Ψ(Xi, Xj ; t+ u, a)−Ψ(Xi, Xj ; t, a))
)
= 0.

and we have 2n(n− 1) such cases.
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• The only remaining possibility is that all indices coincide. We have that

E
( 1

n3

∑
i

(Ψ(Xi, Xi; t+ u, a)−Ψ(Xi, Xi; t, a)
)2

= E
( 1

n2
(Ψ(Xi, Xi; t+ u, a)−Ψ(Xi, Xi; t, a)

)2
,

and since
E(Ψ(X1, X1; t+ u, a)−Ψ(X1, X1; t, a))

2 <∞,

the asymptotic negligence follows.

We have that as n→ ∞

H(u) =E
(√

nVn(t+ u; a)−
√
nVn(t; a)

)2
→ 4E(ψ(X1; t+ u, a)− ψ(X1; t, a))

2.

Exploiting the mean-value theorem gives us

E(ψ(X1; t+ u, a)− ψ(X1; t, a))
2 ≤ E

(dψ(X1; t1, a)

dt

)2
u2,

for t1 ∈ [t, t+ u]. We have that E
(
dψ(X1;t1,a)

dt

)2
is continuous function for t ∈ [0, 1] and a ≥ 1. Taking into account

that the set [0, 1] is compact, we have that the following quantity

C = max
t∈[0,1]

E
(dψ(X1; t, a)

dt

)2
exists and is finite. Therefore, tightness follows from H(u) ≤ Cu2.

We have established that
√
nJn,a

D−→ sup
t∈[0,1]

|ξ(t)|, where {ξ(t)} is the centred Gaussian process, whose covariance

function can be obtained from the following:

K(s, t) =
sata

4
(− log(s))3/2(− log(t))3/2E(Ψ(X,Y ; t, a)Ψ(X,Z; s, a)) =

sata

4
(− log(s))3/2(− log(t))3/2×

(14)∫
R+

∫
R+

∫
R+

(
− 2s

x+z
4 + sz + sx

)(
− 2t

x+y
4 + ty + tx

)
e

1
2

(
− 1

x−
y+z
yz

)
8
√
2π3/2x3/2y3/2z3/2

dxdydz.

The result of the computation above is stated in the Theorem 1.

Proof of Theorem 2. Analogously as before, the statistic (4) can be represented as

Rn,a = V Rn (a, λ̂),

where, for each t and a,

V Rn (a, λ̂) =
1

n2

n∑
i1,i2

Z(Xi1 , Xi2 ; a, λ̂),

is a V -statistic with the estimated parameter λ, with symmetric kernel Z(·; a, λ̂). Applying Taylor expansion as in
(9) and using (10), we conclude that the normality of

√
nV Rn (a, λ̂) can be obtained from the asymptotic normality of√

nV Rn (a) applying Hoeffding theorem for non-degenerate U- (V-) statistics (see, e.g., [15]).

The first projection of the kernel Z(·; a) := Z(·; a, 1) is given by:

ζ(x; a) = E(Z(X1, X2; a)|X1 = x) = −

√
π(3a(a+ 2) + 1)e

1
2a erf

(
1√
2a

)
−
√
2
√
a(5a+ 1)

16a9/2
(15)

+

(
8πe

1
8a+2x

(
48a2 + 24a(x+ 1) + 3x(x+ 2) + 1

)
erf
(

1√
2(4a+x)

)
(4a+ x)9/2

−
8
√
2π(20a+ 5x+ 1)

)
(4a+ x)4

− 3
√
π

8(a+ x)5/2
.

This function is obviously non-constant. In addition, it can be shown that Eζ(X; a)2 < ∞ for every t ∈ [0, 1].
Hence V Rn (a, 1) is non-degenerate. Analogously as before, utilizing the Hoeffding theorem and the multivariate
central limit theorem, we obtain that the limiting distribution of

√
nV Rn (a, λ̂) is normal N (0, σ2

R(a)), where σ2
R(a) =

4Eζ(X; a)2.
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Proof of Theorem 3. It can be easily shown that the minimum of K(θ;λ), as a function of λ, is attained for

λ0 =
( ∫
R+

g(x; θ)

x
dx
)−1

.

Therefore

K(θ) =

∫
R+

(
log

(
g(x; θ)

f(x;λ0)

)
g(x; θ)

)
dx.

K(θ) =

∫
R+

log(g(x; θ))g(x; θ)dx+ log
√
2π +

1

2
log
( ∫
R+

g(x; θ)

x
dx
)
+

1

2
+

3

2

∫
R+

log xg(x; θ)dx.

Under certain regularity conditions [26], the following holds:

K ′(θ) =

∫
R+

log(g(x; θ))g′(x; θ)dx+

∫
R+

g′(x;θ)
x dx

2
∫
R+

g(x;θ)
x dx

+
3

2

∫
R+

log xg′(x; θ)dx.

Noting that

g(x; 0) =

√
λ

2π
e−

λ
2xx−

3
2 ,

where λ > 0 is a parameter, it can be shown that K ′(0) = 0.

The second derivative of K(θ) is equal to

K ′′(θ) =

∫
R+

(g′(x; θ))2

g(x; θ)
dx+

∫
R+

log(g(x; θ))g′′(x; θ)dx

+

( ∫
R+

g′′(x;θ)
x dx

)( ∫
R+

g(x;θ)
x dx

)
−
( ∫
R+

g′(x;θ)
x dx

)2
2
( ∫
R+

g(x;θ)
x dx

)2 +
3

2

∫
R+

log(x)g′′(x; θ)dx.

The straightforward computation leads us to the following:

K ′′(0) =

√
2π

λ

∫
R+

(g′(x; θ))2e−
λ
2xx−

3
2 dx− λ

2

( ∫
R+

g′(x; θ)

x
dx
)2
,

and the conclusion follows from the Maclaurin expansion of K(θ).

Proof of Theorem 5. We give just a broad outline of the proof. The tail behaviour of supt∈[0,1]|ξ(t)| is equal to the

inverse of supremum of its covariance function [19]. Having λ̂ P−→ λ(θ), the law of large numbers for V-statistics for
estimated parameters [13] gives us that Vn(t; a, λ̂) converges to AJ(θ; t) = Eθ(Ψ(X1, X2; t, a, λ(θ))). By expanding
into the Maclaurin series, we get

AJ(θ; t) = AJ(0; t) + θA′J(θ; t) +
θ2

2
A′′J(0; t) + o(θ2).

It can be shown that AJ(0; t) = b′J(0) = 0. The direct calculation yields

A′′J(0; t) = 2

∫
R+

ψ(x; t, a)g′θ(x; 0)dx.

Using the same arguments as in the proof of Theorem 1, it can be shown that the limit in probability of Jn,a under the
alternative equals to supt∈[0,1] |AJ(θ; t)| = bJ(θ), which finishes the proof.

Proof of Theorem 6. The theorem can be shown analogously as in [23, Lemma 2.1]. Hence we omit it here.
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Appendix B – The generalization of the Bhati–Kattumanil statistic

One possible way to generalize the test statistic Tn is to opt for the difference between U-empirical distribution
functions of ω1(X1, X2) =

aX1+bX2(√
a+
√
b
)2 and ω2(X1) = X1, given by

Gn(t) =
1

n(n− 1)

∑
i<j

I
{ aXi + bXj

(
√
a+

√
b)2

≤ t
}

and

Fn(t) =
1

n

∑
i

I
{
Xi ≤ t

}
respectively. This leads us to the statistic

Ī [a,b]n =

∫
R+

(Gn(t)− Fn(t))dFn(t). (16)

It is easy to show that the statistic is scale free under the null hypothesis. This follows from the fact that if X has the
Lévy distribution with the scale parameter λ, then X

λ has the standard Lévy distribution. Therefore, while deriving
asymptotic null properties we may assume that the sample comes from the standard Lévy distribution. Applying the
same arguments as in [6], we come to the following statement about the limiting distribution of Ī [a,b]n under H0.

Theorem 7. Let X1, X2, ..., Xn be an i.i.d. sample. Under H0 the limiting distribution of Ī [a,b]n is centred Gaussian,
i.e. it holds

√
nĪ [a,b]n

D−→ N
(
0, σ2

0(a, b)
)

where

σ2
0

(
a, b
)
= V ar

(
2− P

( aX1 + bX2

(
√
a+

√
b)2

≥ X3|X1

)
− P

( aX2 + bX1

(
√
a+

√
b)2

≥ X3|X1

)
+ P

(
X2 ≤ X1|X1

))
. (17)

The values of σ2
0(a, b) cannot be calculated analytically. However, it is possible to calculate them numerically. Other

values of σ2
0(a, b) are presented in Table 5. Therefore, instead of using jackknife approach, one can also test using

standardized statistic

Ĩ [a,b]n =
√
n
Ī
[a,b]
n

σ0(a, b)
,

or calculate p-values based on Ī [a,b]n using Monte Carlo approach. Both mentioned approaches are much simpler than
original proposed in [6].

Table 5: Some values of σ2
0(a, b)

a b σ2
0 a b σ2

0 a b σ2
0 a b σ2

0

1 2 0.022621 3 10 0.0209729 2 5 0.02199 5 10 0.022621
1 3 0.0213695 4 5 0.0234113 2 6 0.0213695 6 7 0.0234603
1 4 0.0202296 4 6 0.0231973 2 7 0.0207807 6 8 0.0233495
1 5 0.0192384 4 7 0.0229236 2 8 0.0202296 6 9 0.0231973
1 6 0.0183778 4 8 0.022621 2 9 0.0197162 6 10 0.0230191
1 7 0.0176251 4 9 0.0223067 2 10 0.0192384 7 8 0.0234715
1 8 0.0169606 4 10 0.02199 3 4 0.0233495 7 9 0.0233862
1 9 0.0163687 5 6 0.0234425 3 5 0.0230191 7 10 0.0232665
1 10 0.0158373 5 7 0.0232926 3 6 0.022621 8 9 0.023479
2 3 0.0231973 5 8 0.0230928 3 7 0.022201 8 10 0.0234113
2 4 0.022621 5 9 0.0228647 3 8 0.0217804 9 10 0.0234842
3 9 0.0213695 10 10 0.0235051

Analogously to Theorem 4, we formulate the result in the general case.

18



Theorem 8. For an alternative g(x; θ) from G, the Bahadur exact slope of the statistic I [a,b]n is

cI(θ) =
1

σ2
0(a, b)

(∫
R+

φ(x)g′θ(x; 0)dx
)2

· θ2 + o(θ2), θ → 0,

where φ(x) is the first projection of the symmetric kernel Φ(·) of V-statistic that is asymptotically equivalent to I [a,b]n ,
namely

φ(x) =
(
2− P

( aX1 + bX2

(
√
a+

√
b)2

≥ X3|X1

)
− P

( aX2 + bX1

(
√
a+

√
b)2

≥ X3|X1

)
+ P

(
X2 ≤ X1|X1

))
.

There is no significant difference between the statistic I [1,1] and I [a,b] for different values of a and b with regard to
the empirical powers against all of the alternatives mentioned in this paper and the local approximate Bahadur relative
efficiencies, as can be seen in Table 6.

Table 6: Local approximate Bahadur relative efficiencies of I [a,b] with respect to LR test

g
[10]
1 g2 g

[3]
3 g4 g5

I [1,1] 0.59 0.54 0.73 0.53 0.41
I [2,3] 0.59 0.54 0.73 0.53 0.41
I [5,9] 0.58 0.54 0.73 0.53 0.41
I [9,6] 0.59 0.54 0.73 0.53 0.41
I [10,4] 0.57 0.53 0.72 0.52 0.40

Appendix C – Real data

In this section, the data used in Section 6 is given alongside with appropriate histograms. The theoretical Lévy densities
are drawn using the maximum likelihood estimate of the scale parameter λ.

Figure 3: Histogram of the data from Table 7 and the appropriate Lévy density. The purple line represents the Lévy
density with the scale parameter estimated by MLE (λ̂ = 11.82935).
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Table 7: Weighted average of rainfall (in mm) data for India for the month of January
Year Rainfall Year Rainfall

1981 29.3 1997 14.3
1982 23.8 1998 16.4
1983 18.5 1999 13.7
1984 19 2000 18.4
1985 23.2 2001 7.3
1986 15.5 2002 15.7
1987 13.2 2003 7.6
1988 10.4 2004 25.7
1989 15.4 2005 28.1
1990 16 2006 17.7
1991 14.3 2007 1.7
1992 16 2008 18.4
1993 18.2 2009 12
1994 25 2010 7.5
1995 31.3 2011 6.8
1996 22.9

Table 8: Well yields (in gal/min/ft) based on Hillside location
0.220 1.330 0.750 0.180 0.010 0.160
0.280 0.870 0.020 0.100 0.030 0.050
0.860 5.000 0.040 4.000 0.370 0.380
0.110 0.100 0.020 0.010 0.050 0.170
0.460 0.160 1.330 0.140 2.860 0.130
7.500 4.500 0.030 0.003 0.050 0.020
0.040 0.750 0.520 5.000 0.350

Figure 4: Histogram of the inverse of the data from Table 8 and the appropriate Lévy density. The red line represents
the Lévy density with the scale parameter estimated by MLE (λ̂ = 1.052551).

Appendix D – Median-based estimator

We conduct the power study as in Section 5 when the median-based estimator is employed. Results are presented
in Table 10. From Table 10, it can be seen that JEL and AJEL approaches, proposed in [6], are less powerful than
classical, whenever the testing is utilized via the original version of |I [1,1]|. It can be concluded that novel tests are
comparable with the tests Na

1 and N b
1 proposed in [32]. It is also notable that the new tests are comparable with EDF-

based tests. In many cases, the new tests show better performance than the EDF-based tests. From Tables 11, 12, 13,
and 14 seems that the estimation procedure doesn’t significantly influence the distribution under the null hypothesis
for larger sample sizes for the novel tests, which is in concordance with previously obtained theoretical results. The
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significant difference in test powers in Table 3 and 10 could be attributed to the difference in the behaviour of the
estimates under the alternative distributions.

Note that results analogous to Theorem 1 and 2 could be established similarly to the MLE case. The consistency of
λ̂MBE will follow from [20].

The novel tests using the MBE can be applied to the real data examples from Section 6. Results are presented in Table
9.

Table 9: p-values of novel tests - MB estimate
R0.2 R0.5 R1 R2 R5

Rainfall 0.3559 0.0314 0 0 0
Hillside 0.012 0.0058 0.042 0.4087 0.6572

J1 J2 J5 J10

Rainfall 0.026 0 0 0
Hillside 0.014 0.1364 0.7029 0.3086

From Figure 3 presented in Appendix C, it can be deduced that the empirical density of the Rainfall data is, among
the distributions studied in the simulation study, closest to LG(7, 2). Since R0,2 is the least powerful test against this
alternative and all of the other tests report p-values smaller than 0.05, we can conclude that the Lévy distribution is not
a justified choice for the Rainfall data.

Analogously to the MLE case, R0,2 is quite powerful against LL(1, 2). Therefore, we cannot conclude that the Lévy
distribution is the appropriate model for the Hillside data.
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Appendix E – Critical values of the new tests

In this section, the empirical 95th percentiles of the distributions of
√
nJn,a and |

√
nRn,a|, under H0, are presented.

Different shape parameters λ of the null distribution are used. The values are computed using Monte Carlo simulations
with N = 100000 repetitions. In Tables 13 and 14, in the column ∞, 95th percentiles of the asymptotic half-normal
HN(0, σ2

R(a)) distribution are presented.

Table 11: Critical values of
√
nJn,a statistic, for N=100000 repetitions and λ = 0.5.

n
√
nJn,1

√
nJn,1

√
nJn,2

√
nJn,2

√
nJn,5

√
nJn,5

√
nJn,10

√
nJn,10

MLE MED MLE MED MLE MED MLE MED

20 0.14827 0.14335 0.02585 0.02465 0.00212 0.00215 0.00029 0.00029
40 0.14112 0.13843 0.02511 0.02483 0.00208 0.00209 0.00028 0.00029
60 0.13798 0.13679 0.02482 0.02450 0.00211 0.00209 0.00029 0.00029
80 0.14025 0.14030 0.02565 0.02504 0.00211 0.00210 0.00029 0.00029
100 0.13997 0.13954 0.02477 0.02467 0.00215 0.00214 0.00028 0.00029
120 0.13885 0.13779 0.02482 0.02499 0.00209 0.00208 0.00029 0.00029
140 0.13847 0.13828 0.02467 0.02455 0.00206 0.00205 0.00028 0.00029
160 0.13808 0.13750 0.02518 0.02483 0.00210 0.00208 0.00029 0.00029
180 0.14067 0.13904 0.02469 0.02473 0.00208 0.00210 0.00029 0.00029
200 0.14079 0.13972 0.02519 0.02505 0.00207 0.00206 0.00028 0.00028
220 0.13827 0.13856 0.02465 0.02444 0.00207 0.00207 0.00029 0.00029
240 0.14066 0.13747 0.02515 0.02493 0.00208 0.00207 0.00029 0.00029
260 0.13857 0.13848 0.02484 0.02472 0.00211 0.00211 0.00028 0.00028
280 0.14032 0.14023 0.02509 0.02500 0.00208 0.00208 0.00029 0.00028
300 0.13732 0.13691 0.02509 0.02475 0.00210 0.00209 0.00029 0.00029
320 0.13790 0.13780 0.02470 0.02470 0.00208 0.00207 0.00028 0.00029
340 0.13694 0.13777 0.02470 0.02478 0.00208 0.00208 0.00028 0.00028
360 0.14034 0.13795 0.02491 0.02491 0.00208 0.00207 0.00028 0.00028
380 0.14178 0.14103 0.02515 0.02497 0.00210 0.00210 0.00028 0.00028
400 0.13703 0.13746 0.02496 0.02479 0.00209 0.00209 0.00029 0.00029
420 0.13731 0.13813 0.02505 0.02495 0.00209 0.00209 0.00029 0.00028
440 0.13866 0.13864 0.02472 0.02486 0.00204 0.00205 0.00029 0.00029
460 0.13859 0.13753 0.02500 0.02494 0.00210 0.00211 0.00028 0.00028
480 0.13863 0.13743 0.02471 0.02455 0.00207 0.00207 0.00029 0.00029
500 0.13778 0.13719 0.02471 0.02461 0.00211 0.00210 0.00029 0.00029
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Table 12: Critical values of
√
nJn,a statistic, for N=100000 repetitions and λ = 5.

n
√
nJn,1

√
nJn,1

√
nJn,2

√
nJn,2

√
nJn,5

√
nJn,5

√
nJn,10

√
nJn,10

MLE MED MLE MED MLE MED MLE MED

20 0.14721 0.14587 0.02576 0.02487 0.00211 0.00211 0.00028 0.00028
40 0.14223 0.13780 0.02557 0.02467 0.00213 0.00214 0.00028 0.00028
60 0.14306 0.14023 0.02499 0.02454 0.00208 0.00207 0.00028 0.00028
80 0.14053 0.13881 0.02519 0.02472 0.00209 0.00210 0.00029 0.00029
100 0.14162 0.13724 0.02508 0.02492 0.00208 0.00208 0.00029 0.00029
120 0.13977 0.13679 0.02506 0.02467 0.00207 0.00208 0.00029 0.00029
140 0.13999 0.13811 0.02505 0.02498 0.00208 0.00207 0.00028 0.00029
160 0.13895 0.13837 0.02482 0.02485 0.00208 0.00208 0.00029 0.00029
180 0.13903 0.13740 0.02518 0.02474 0.00208 0.00211 0.00029 0.00028
200 0.14000 0.13887 0.02497 0.02479 0.00208 0.00207 0.00029 0.00029
220 0.13798 0.13963 0.02483 0.02455 0.00211 0.00213 0.00029 0.00029
240 0.13681 0.13660 0.02480 0.02461 0.00207 0.00206 0.00029 0.00029
260 0.13797 0.13741 0.02503 0.02470 0.00208 0.00208 0.00029 0.00029
280 0.14082 0.13991 0.02479 0.02484 0.00206 0.00208 0.00029 0.00029
300 0.13751 0.13719 0.02484 0.02457 0.00206 0.00206 0.00029 0.00029
320 0.14183 0.13939 0.02544 0.02521 0.00208 0.00208 0.00028 0.00028
340 0.14109 0.13875 0.02514 0.02509 0.00209 0.00208 0.00028 0.00028
360 0.13746 0.13723 0.02497 0.02493 0.00209 0.00210 0.00029 0.00029
380 0.14061 0.13883 0.02480 0.02477 0.00207 0.00206 0.00028 0.00028
400 0.13714 0.13641 0.02415 0.02409 0.00212 0.00211 0.00029 0.00029
420 0.13798 0.13886 0.02485 0.02459 0.00209 0.00209 0.00029 0.00029
440 0.14116 0.14154 0.02471 0.02454 0.00210 0.00210 0.00029 0.00029
460 0.14085 0.14010 0.02464 0.02468 0.00209 0.00209 0.00028 0.00028
480 0.13887 0.13834 0.02513 0.02505 0.00208 0.00208 0.00029 0.00029
500 0.13690 0.13597 0.02492 0.02454 0.00208 0.00209 0.00029 0.00029
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