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A B S T R A C T

The adjacency matrix of a signed graph has þ1 or �1 for adjacent vertices, depending on the sign of the con-
necting edge. According to this concept, an ordinary graph can be interpreted as a signed graph without negative
edges. An edge-decomposition of a signed graph _G is a partition of its edge set into (non-empty) subsets E1, E2, …,
Ek. Every subset Ei (1 � i � k) induces a subgraph of _G obtained by keeping only the edges of Ei. Accordingly, a
fixed edge-decomposition induces a decomposition of _G into the corresponding subgraphs. This paper establishes
some upper bounds for the largest eigenvalue of the adjacency matrix of a signed graph _G expressed in terms of
the largest eigenvalues of subgraphs induced by edge-decompositions. A particular attention is devoted to the so-
called cycle decompositions, i.e., decompositions into signed cycles. It is proved that _G has a cycle decomposition
if and only if it is Eulerian. The upper bounds for the largest eigenvalue in terms of the largest eigenvalues of the
corresponding cycles are obtained for regular signed graphs and Hamiltonian signed graphs. These bounds are
interesting since all of them can easily be computed, as the largest eigenvalue of a signed cycle is equal to 2 if the
product of its edge signs is positive, while otherwise it is 2cos πj , where j stands for the length. Several examples are

provided. The entire paper is related to some classical results in which the same approach is applied to ordinary
graphs.
1. Introduction

A signed graph _G is an ordered pair (G, σ), where G ¼ (V, E) is an
ordinary graph, also known as the underlying graph, and σ: E → { �1,
þ1} is the sign function or the signature. The edge set E of a signed graph
is partitioned into subsets of positive and negative edges, denoted by Eþ

and E�, respectively. An ordinary (unsigned) graph is viewed as a signed
graph with the all positive signature. The number of vertices (also known
as the order) of a signed graph is denoted by n.

The adjacency matrix A _G of _G is obtained from the adjacency matrix
of G by replacing þ1 with �1 whenever the corresponding edge is
negative. The eigenvalues of _G are the eigenvalues of A _G. In particular,
the largest eigenvalue, also known as the index, is denoted by λ1, or λ1ð _GÞ
if the corresponding signed graph needs to be specified.

An edge-decomposition of a signed graph _G is a partition of its edge
set Eð _GÞ ¼ fE1;E2;…;Ekg. It can also be written Eð _GÞ ¼ E1 t E2 t⋯ t Ek.
Every subset Ei (1 � i � k) induces a subgraph _GjEi , and _G is decomposed

into _GjE1 ; _GjE2 ;…; _GjEk . For more details on signed graphs, their eigen-
values and eigenspaces, the reader is referred to (Zaslavsky, 2010).
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The purpose of this paper is to give some upper bounds for λ1ð _GÞ
expressed in terms of λ1ðGjEi Þ; 1 � i � k. The particular case when _G is

decomposed into cycles and the case when _G is regular are also consid-
ered. In addition, this paper deals with Eulerian and Hamiltonian signed
graphs, where a signed graph is regular, Eulerian or Hamiltonian
whenever the same holds for its underlying graph. Some related results
can be found in the previous works (Stani�c, 2018, 2019a, 2022). This
study is also related to the works of Fiedler and Mohar, see (Fiedler,
1973, 1975; Mohar, 1991), where a similar approach is applied to or-
dinary graphs.

The entire contribution is reported in the next section. Concluding
remarks are given in Section 3.
2. Results

A signed cycle is positive if the product of its edge signs is 1; other-
wise, it is negative. A signed graph is balanced if it has no negative cycles.
If U is a subset of the set of vertices V of _G, then the switched signed graph
_G
U
is obtained by reversing the sign of every edge with one end in U and
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Fig. 1. The signed graph _G for Example 2.1.

Z. Stani�c
the other in V \ U. A signed graph is balanced if and only if it switches to
its underlying graph (Zaslavsky, 2010). We know from (Stani�c, 2019a,
2019b) that λ1ð _GÞ � λ1ðGÞ, along with equality if and only if _G is
balanced.

Two subgraphs are said to be vertex-disjoint if they have no common
vertices. Let D denote the collection of all edge-decompositions of _G. For
D 2 D, let VD denote a partition {D1, D2,…, Dℓ} of D such that subgraphs
induced by Di (1 � i � ℓ) are vertex disjoint, and let VD denote the
collection of all such partitions.

Example 2.1. Fig. 1 illustrates the signed graph _G with exactly one
negative edge, depicted by a dashed line. An edge-decomposition, say D,
of _G induces the negative cycle _C6, the positive cycle C5 and the path P4
lying between them. Formally, D ¼ fEð _C6Þ; EðC5Þ; EðP4Þg. There are
exactly two partitions of D such that the corresponding subgraphs are
vertex-disjoint: the first is D itself and the second one is fEð _C6Þ [EðC5Þ;
EðP4Þg, as two cycles are vertex-disjoint.
Here is the following result.

Proposition 2.2. It holds

λ1ð _GÞ � min
D2D;fD1 ;D2 ;…;Dℓg2VD

Xℓ
i¼1

λ1ð _GjDi
Þ:

Proof. Let D denote an arbitrary edge-decomposition of _G and {D1, D2,
…, Dℓ} denote an arbitrary partition of D. Let also Ai denote the matrix
obtained from A _G by replacing every element outside the submatrix A _GjDi
with a zero. Clearly, A _G ¼Pℓ

i¼1Ai. By the Rayleigh principle,

λ1ð _GÞ ¼ max
x2Rn ;kxk¼1

x⊺A _Gx ¼ max
x2Rn ;kxk¼1

x⊺
 Xℓ

i¼1

Ai

!
x

¼ max
x2Rn ;kxk¼1

Xℓ
i¼1

x⊺Aix �
Xℓ
i¼1

max
xi2Rn ;kxik¼1

x⊺i Aixi:

(1)

If the order of _GjDi
is ni, then it holds

max
xi2Rn ;kxik¼1

x⊺i Aixi ¼ max
yi2Rni ;kyik¼1

y⊺i A _GjDi
yi;

where yi is the restriction of xi on vertices of _GjDi
. Again, by the Rayleigh

principle, the right hand side of the previous equality is the index of _GjDi
,

λ1ð _GjDi
Þ. Together with the inequality of (1), this leads to

λ1ð _GÞ �
Pℓ

i¼1λ1ð _GjDi
Þ. Since D and {D1, D2, …, Dℓ} were arbitrary, the

desired result follows. □

Corollary 2.3. For every edge-decomposition {E1, E2, …, Ek} of a signed
graph _G,

λ1ð _GÞ �
Xk
i¼1

λ1ð _GjEi Þ:
201
Proof. This result follows from Proposition 2.2 since for every partition

{D1, D2, …, Dℓ} of fE1;E2, …; Ekg, the collection f _GjD1

; _GjD2
;…; _GjDℓ

g is

contained in f _GjE1 ; _GjE2 ;…; _GjEkg. □
Example 2.4. In this example the edge-decomposition of the graph _G of
Example 2.1 is used to illustrate the difference between the results of the
previous two statements. Accordingly, for the decomposition D (of the
previous example), Corollary 2.3 gives

λ1ð _GÞ � λ1ð _C6Þ þ λ1ðC5Þ þ λ1ðP4Þ ¼
ffiffiffi
3

p
þ 2þ 1þ ffiffiffi

5
p

2
� 5:3501:

For the partition fEð _C6Þ [EðC5Þ;EðP4Þg, Proposition 2.2 gives

λ1ð _GÞ � λ1ð _C6 [C5Þ þ λ1ðP4Þ ¼ 2þ 1þ ffiffiffi
5

p

2
� 3:6180:

In other words, in Corollary 2.3, whenever the subgraphs induced by
particular sets of edges, say Er and Es, are vertex disjoint, then minf
λ1ð _GjEr Þ; λ1ð _GjEs Þg can be dropped from the right hand side of the corre-
sponding inequality.

If every edge subset Ei induces a cycle, then the corresponding
decomposition is called a cycle decomposition of _G.

Proposition 2.5. A signed graph has a cycle decomposition if and only if it
is Eulerian.

Proof. First, if a signed graph, say _G, is Eulerian, then a cycle decom-
position is obtained by extracting cycles from an Eulerian trail. For the
converse, let u be a vertex of _G. Then every cycle of a decomposition
either passes through u in which case it takes exactly two edges incident
with u, or does not pass through u in which case it does not take any edge
incident with u. Accordingly, u has an even degree, which implies that _G
is Eulerian. □

If _G is Eulerian, then there is the following consequence.

Proposition 2.6. If _Cj1 ;
_Cj2 ;…; _Cjk form a cycle decomposition of a signed

graph _G, then

λ1ð _GÞ � 2
Xk
i¼1

ci; (2)

where

ci ¼

8><
>:

1 _if Cji is positive;

cos
π
ji

otherwise:

Equality is attained if _G is a signed cycle or is balanced and _Cji is a
Hamiltonian cycle for every i.

Proof. Corollary 2.3 gives λ1ð _GÞ �
Pk

i¼1λ1ð _Cji Þ. On the other hand,
Theorem 4.1 of (Simi�c and Stani�c, 2016) implies that λ1ð _Cji Þ is either 2 or
2cos πji (depending on whether _Cji is positive or not), which leads to the

desired inequality.
If _G is a signed cycle, then it has a unique cycle decomposition con-

sisting of itself, and the equality in (2) follows. If the cycles are Hamil-
tonian, then _G is necessarily regular, say of vertex degree r. In this case,
k ¼ r

2 and ci ¼ 1 for every i (since _G is balanced), which gives r ¼ λ1ðGÞ ¼
λ1ð _GÞ � 2

Pr=2
i¼1ci ¼ r, and the proof is completed. □

The next proposition, together with the subsequent text, considers the
quality of the bound obtained in the previous result in case of regular
signed graphs.

Proposition 2.7. Let _Cj1 ;
_Cj2 ;…; _Cjk be a cycle decomposition of a regular

signed graph with n vertices and even vertex degree r. Then

Kuwait Journal of Science 50 (2023) 200–203
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2
Xk

ci � r cos
π
; (3)
i¼1 n

where the parameters ci are defined in Proposition 2.6. The equality holds if
and only if _Cji is a negative Hamiltonian cycle for every i.

Proof. It holds

2
Xk
i¼1

ci � 2
Xk
i¼1

cos
π
ji
; (4)

with equality if and only if Cji is negative for every i.

Since
Pk

i¼1ji ¼ rn
n ,

rn
2k is the average length of cycles in the decompo-

sition. Without loss of generality, assume that j1 � j2 � ⋯ � jk.
For j1 ¼ jk,

2
Xk
i¼1

cos
π
ji
¼ 2

Xk
i¼1

cos
2kπ
rn

: (5)

Since cos π
x > cos π

xþ1 for x � 3 (and rn
2k � 3), it holds

2
Xk
i¼1

cos
2kπ
rn

� r cos
π
n
; (6)

with equality if and only if k ¼ r
2. Now, (5) and (6) lead to (3).

For j1 ¼ jk � 1,

2
Xk
i¼1

cos
π
ji
¼ 2

0
B@s cos

π�
rn
2k

�þ t cos
π�
rn
2k

�
1
CA; (7)

with s
�
rn
2k

�þ t
�
rn
2k

� ¼ rn
2 .

For j1 < jk � 1, an easy trigonometric calculus gives cos π
j1
þ cos π

jk
>

cos π
j1þ1þ cos π

jk�1. Accordingly,

2
Xk
i¼1

cos
π
ji
> 2

  Xk�1

i¼2

cos
π
ji

!
þ cos

π
j1 þ 1

þ cos
π

jk � 1

!
:

In other words, j1 and jk may be replaced with j1 þ 1 and jk � 1 to
decrease the sum on the left hand side. Now, one may repeat the following
procedure until j1 � jk � 1: relabel the parameters j1 þ 1, j2,…, jk�1, jk þ 1
into j1 � j2 � ⋯ � jk and apply the previous replacing. In the end,

2
Xk
i¼1

cos
π
ji
> 2

0
B@s cos

π�
rn
2k

�þ t cos
π�
rn
2k

�
1
CA; (8)

with s
�
rn
2k

�þ t
�
rn
2k

� ¼ rn
2 , as before.

The argument stated before the inequality (6) implies

2

0
B@s cos

π�
rn
2k

�þ t cos
π�
rn
2k

�
1
CA � r cos

π
n
; (9)

again with equality if and only if k ¼ r
2. The inequality (3) follows by

taking (4), (7) and (9) for j1 ¼ jk � 1, and (4), (8) and (9) for j1 < jk � 1.
Consider now the case of equality in (3). If Cji is a negative Hamil-

tonian cycle for every i, then ci ¼ 2cos πn and there are r
2 cycles in the

decomposition, and the equality follows. Assume now that the equality
holds. This, in the first place, implies equality in (4), which means that all
cycles are negative.

For j1 ¼ jk, there is equality in (6), which implies k ¼ r
2, and thus the

cycles are Hamiltonian.
For j1 ¼ jk � 1, it holds j1 ¼ �

rn
2k

�
<
�
rn
2k

� ¼ jk, which in particular
means that k 6¼ r

2. The latter gives the strict inequality in (9), which
contradicts the assumption on equality in (3).
202
For j1 < jk � 1, the strict inequality in (8) contradicts the same
assumption, and the proof is completed. □

The previous proposition gives a lower amplitude for the upper bound
of (2). Moreover, the right hand side of (3) is always less than r (where r is
the vertex degree and simultaneously the upper bound for λ1ð _GÞ). In
addition, if _G is unbalanced and allows a Hamiltonian decomposition,
then the upper bound of (2) is non-trivial in the sense that it is less than r.
This also applies to the question of how the largest eigenvalue of a signed
graph differs from the index of its underlying graph. Namely, if _G allows a

Hamiltonian decomposition, then λ1ðGÞ� λ1ð _GÞ � r�Pr=2
i¼1ci. Finally, it

is worth mentioning that Hamiltonian decompositions of graphs have
attracted a notable attention. First, such a (signed) graph must be regular
of even vertex degree. Next, testing whether an arbitrary graph has a
Hamiltonian decomposition is NP-complete (P�eroche, 1984). It is known
that every complete graph of odd order has a Hamiltonian decomposition
(Hanfried and Ringel, 1991). Random regular graphs of even degree
almost always have a Hamiltonian decomposition (Kim and Wormald,
2001). For more results, the reader is referred to (Bermond, 1978; Kotzig,
1957; Martin, 1976) and references therein.

According to (Bryant et al., 2014), every complete graph of even
order allows a decomposition consisting of a perfect matching and the set
of Hamiltonian cycles. Together with Propositions 2.2 and 2.6, this gives
the following consequence; the proof follows immediately.

Corollary 2.8. For a complete signed graph _G of even order n,

λ1ð _GÞ � 2
Xðn�2Þ=2

i¼1

λ1ð _Ci
nÞ þ 1;

where _C
1
n ;

_C
2
n ;…; _C

ðn�2Þ=2
n are edge-disjoint Hamiltonian cycles of _G.

In the particular case of unsigned graphs, there is the following result
based on the recently proved Bar�at-Thomassen conjecture (Bar�at and
Thomassen, 2006). The conjecture states that for any tree Twithm edges,
there exists an integer k ¼ k(T) such that every k-edge-connected graph
whose number of edges is divisible bym has a T-decomposition, that is an
edge-decomposition such that all the corresponding subgraphs are
isomorphic to T. The conjecture was confirmed to be true in (Bensmail
et al., 2017). Accordingly, there is the following result.

Corollary 2.9. For a tree T, if a graph G has a T-decomposition and the
corresponding subgraphs are partitioned into s classes in such a way that two
with a common vertex are not in the same class, then λ1(G) � sλ1(T).

Proof. This result is obtained by setting Di ¼ E(T) for every i in Prop-
osition 2.2. □

Of course, the previous corollary remains valid for signed graphs _G as
λ1ð _GÞ � λ1ðGÞ and every signed tree switches to its underlying tree.

3. Conclusion

The most frequently investigated eigenvalue of a graph (weighted
graph, directed graph, or any other generalization) is the largest eigen-
value of its adjacency matrix. It is usually estimated by the upper or the
lower bounds expressed in terms of structural parameters and/or the
eigenvalues of related graphs. Many details can be found in (Stani�c,
2015). This paper deals with the concept of signed graphs that encap-
sulates the concept of ordinary graphs in the sense that every graph is
interpreted as a particular signed graph. The obtained results offer upper
bounds for the largest eigenvalue of a signed graph in terms of the largest
eigenvalues of subgraphs induced by edge-decompositions. A particular
attention is devoted to the so-called cycle decompositions of regular
signed graphs and Hamiltonian signed graphs. As mentioned in the
previous section, cycle decompositions (in particular, Hamiltonian de-
compositions) have received a great deal of attention over the last seven
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decades, and the results of this paper are related to those obtained in the
corresponding references.

Needless to add, every result remains valid for ordinary graphs. In
addition, if a signed graph _G is regular of vertex degree r, then the least
eigenvalue of its Laplacian matrix (the matrix D _G � A _G, where D _G is the
diagonal matrix of vertex degrees) is r� λ1ð _GÞ, which means that the
results dealing with regular signed graphs can be formulated in terms of
this eigenvalue, as well.
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