@

TUBITAK Turkish Journal of Mathematics
Volume 47 | Number 5 Article 5
1-1-2023

Between graphical zonotope and graph-associahedron

MARKO PESOVIC

TANJA STOJADINOVIC

Follow this and additional works at: https://journals.tubitak.gov.tr/math

0‘ Part of the Mathematics Commons

Recommended Citation

PESOVIC, MARKO and STOJADINOVIC, TANJA (2023) "Between graphical zonotope and graph-
associahedron," Turkish Journal of Mathematics: Vol. 47: No. 5, Article 5. https://doi.org/10.55730/
1300-0098.3434

Available at: https://journals.tubitak.gov.tr/math/vol47/iss5/5

This Article is brought to you for free and open access by TUBITAK Academic Journals. It has been accepted for
inclusion in Turkish Journal of Mathematics by an authorized editor of TUBITAK Academic Journals. For more
information, please contact academic.publications@tubitak.gov.tr.


https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol47
https://journals.tubitak.gov.tr/math/vol47/iss5
https://journals.tubitak.gov.tr/math/vol47/iss5/5
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3434
https://doi.org/10.55730/1300-0098.3434
https://journals.tubitak.gov.tr/math/vol47/iss5/5?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol47%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr

Turkish Journal of Mathematics Turk J Math

(2023) 47: 1362 — 1373

© TUBITAK

T U B | TAK Research Article doi:10.55730/1300-0098.3434

http://journals.tubitak.gov.tr/math/

Between graphical zonotope and graph-associahedron

Marko PESOVICY*®, Tanja STOJADINOVIC!?
'Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
2Faculty of Mathematics, University of Belgrade, Belgrade, Serbia

Received: 02.04.2023 . Accepted/Published Online: 11.04.2023 . Final Version: 18.07.2023

Abstract: This manuscript introduces a finite collection of generalized permutohedra associated to a simple graph. The
first polytope of this collection is the graphical zonotope of the graph, and the last is the graph-associahedron associated
to it. We describe the weighted integer points enumerators for polytopes in this collection as Hopf algebra morphisms of

combinatorial Hopf algebras of decorated graphs. In the last section, we study some properties related to H—polytopes.

Key words: Generalized permutohedron, quasisymmetric function, graph, decorated graph, combinatorial Hopf algebra,

f—polynomial

1. Introduction

In this paper we construct a finite collection of generalized permutohedra associated to a simple graph. This
collection starts with the graphical zonotope and ends with the graph-associahedron. To each generalized
permutohedron @ is associated a quasisymmetric function F(Q), introduced in [4]. It enumerates positive
lattice points in the normal fan Ng. The weighted analogue F,(Q) of this enumerator, which takes into
account the face structure of the normal fan Ng, is introduced and studied in [6]. Among its properties is
that the f—polynomial f(()) can be obtained as the principal specialization of Fy(Q). For different classes of
generalized permutohedra the algebraic interpretation of these enumerators is given by a universal morphism
from appropriately defined combinatorial Hopf algebras to the combinatorial Hopf algebra of quasisymmetric
functions QSym.

The cases of graphical zonotopes Zr and graph-associahedra Pr are of special interest. The enumerator
F(Zr) is known to be the Stanley’s chromatic symmetric function and the enumerator F(Pr) is the chromatic
quasisymmetric function introduced in [5]. Our construction produces a finite collection of weighted quasisym-
metric functions between F,(Zr) and F,(Pr). We show that each of these weighted quasisymmetric functions

is actually derived from certain combinatorial Hopf algebra of decorated graphs.

2. Graph polytopes
For the standard basis vectors {es}i1<s<n in R™, let Ay :=conv{es : s € H} be the simplex determined by a

subset H C [n]. The hypergraphic polytope of a hypergraph H on [n] is the Minkowski sum of simplices

QH = Z AH.

HeH
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Since generalized permutohedra are Minkowski sums and differences of dilated simplices (see [9]), we have that
any hypergraphic polytope is a generalized permutohedron, i.e. a convex polytope whose normal fan Ng,, is
refined by the reduced normal fan Np..—1 of the standard (n — 1)—dimensional permutohedron Pe™~!. The
(n—d)-dimensional faces of Pe™~! are in one-to-one correspondence with set compositions C = C1|Cs| - - - |Cy of
the set [n] (see [9], Proposition 2.6). By this correspondence and the correspondence between set compositions
and flags of subsets we identify a face C of Pe"™! with the flag F : ) = Fy C Fy--- C F; = [n], where
F, =U"2,C; for 1 <m <d.

For a flag F of subsets let Mz be the enumerator of positive integer points w = (w1, ws,...,wy) € Z7

in the interior of the normal cone Npgn-1(F) at the (n — d)—dimensional face JF,

My = E Loy Loy *** Tawyy -
WELZRNND 1 (F)

The enumerator Mz is a monomial quasisymmetric function depending only on the composition
type(F) := (|Ful, | F2| — |Fils - - -, | Fal = |Fa-1]).

Further, for a hypergraph H, in [8] is defined its splitting hypergraph H/F by a flag of subsets
F:FyCF, C--- CFy with
k

H/f = |_|(H|Fi)/Fi*17

i=1
where the restriction H|r and the contraction H/F are defined by H|p := {H €¢ H : H C F} and H/F :=
{H\ F: H € H}. In the same paper, the weighted integer points enumerator is defined as

B = % M, 2.)
FeL(Pen—1)

where rk(H/F) :=n —¢(H/F), ¢(H/F) is the number of connected components of the hypergraph H/F and
L(Pe™1) is the face lattice of the standard permutohedron Pe™~!.

Definition 2.1 For a hypergraph H on [n] we define a family of polytopes

Qu,m = Z Ag,

HcH
|H|<m+1

for m € N.
A simple graph T' = ([n], E) determines a hypergraph of vertices of its connected subgraphs
H(T") := {S C [n] : T'|s is connected}.
Consequently, the following family of polytopes is determined by T’
Qr,m = Qur),m>
for m € N. Note that Qr; is a graphical zonotope and Qr,, is a graph-associahedron for m > n —1. If

Hp(I) :={S C[n] : |S| <m+1and I'|s is connected}, then Qr ,, is the hypergraphic polytope Qu,,(r)-
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3. Hopf algebras of decorated graphs

We say that T = ([n], E,w) is a decorated graph if I" = ([n], E) is a simple graph and w : E — N is a
decoration of I'. Let I'*|g be the induced decorated subgraph on S C [n] and I'”/S be induced subgraph on
[n] \ S with additional edges uv for all pairs of vertices u,v € [n]\ S connected by edge paths through S. The

decoration of a new edge uv is the minimal sum of decorations over edge paths through S, i.e.

wuww) = min {w(usy) + w(s1s2) + -+ - + w(sgv)}.
us1, $182, ..., spvE€ E(T'™)
51,52,..0, SKES

We call T'|g the ripping of a decorated graph I'* to S and I'*’/S the sewing of a decorated graph I' by S.

Example 3.1 For the decorated graph T and the subset S = {1,4,5,6}, the ripping T'"|s and the sewing

/S are given on Figure 1.

52 6L g 52 6 7
3| 3|
1 /1 4 /1 1/ |
3| 3|
1—5-2—3 1 2—3

Figure 1. Decorated graphs I'*, I'”|g and I'"/S.

We say that I' is an 1—uniform decorated graph, denoted by I'!, if w(uv) =1 for all uv € E. Then,
the decoration of an additional edge uv in I''/S, for S C [n], is the length of the shortest path through S

from w to v.
Two decorated graphs are isomorphic if there is a bijection between them, which preserves decoration.

Let GY denote the k—span of all isomorphism classes of decorated graphs on n vertices, where GV := k{(}

and ) is the unique decorated graph on the empty set. For each m € N we will endow

" =gy

n>0

with the structure of a graded Hopf algebra.

The unit v : k — GV, counit € : G" — k and the product p: G" ® G — G are the same for all m
and they are defined by u(1) := 0,

1, I =
ey =147 0.’ and -T2 .= (I UTy)wee,
0, otherwise,

Here, the decoration wiws : E7 LI EF5 — N is defined with

wy (uv), wv € By,

wo(uv), wv € Es.

wrwa(uv) = {
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For an integer m € N we define the coproduct A,, : GV — ¢V @ GV by

Am(T?) =Y pry (I]s) @ pr,, (0/5),
SC[n]

for T¥ € W, where pr,, : G — G" is the map which deletes all edges whose decorations are greater of m.

The antipode S,,, of I'* is determined by the general Takeuchi’s formula for the antipode of a graded

connected bialgebra

k
S(Fw) = Z(il)k Z Hprm(rw|Fi/Fi—1)7

k>1 Fp i=1

where the inner sum goes over all flags of subset Fy : 0 = Fy C Fy C --- C Fy, = [n].

Proposition 3.2 For all m € N, W' = (GW u,u, Ay, e,8,) is a graded connected Hopf algebra.

Proof We only prove compatibility of the product and coproduct and coassociativity, since other properties

are straightforward. For a decorated graph I'* on [n], one has the following identities

(A @Id) o Ap)T¥) = > pr,(I"[s,) ®pr,(I"]s,/S1) @ pr,, (I"/Sa),
PCS1CS2Cn]

((d®Am) o Ap)T) = > pr,(I"]s,) @ pr,, (I /Si|s,\s,) @ pr,, (T/81)/(S2\ S1)).
0CS1CS2C[n]

Since (I'*'/S1)/(S2\ S1) =T /Ss, it is sufficient to show that
Pry (1]s,/51) = pryn (T /51505,

Let uv € T"|s,/S1 and w(uv) < m. It means that u and v are connected in I'[g,\g, or there is a path in
I'[s, throught S; of cost at most m. In both cases uv € pr,, (I'""/S1]g,\s,). Conversely, if uv € I'”/S1|g,\s,
and w(uv) < m, then u and v are connected in I'[g,\g, or there is a path in I'[s, throught S;. Again, in
both cases uv € pr,,(I'"|s,/51)-

Furthermore, for a pair of decorated graphs I'f* € GV and I'y? € GIV'™ and subsets S; C [ny] and

Sy C [n2] one has isomorphisms
(T sy) - (092%]s,) = (T - T9%)[syus,  and (T /S1) - (I'57/82) = (I - 1'572)/(S1 U Sa),

which proves commutativity of the bialgebra diagram in the definition of Hopf algebra. O

Now we define ¢, : '™ — k[q] by
Cq(rw) = qnfc(rw)’

for I € V'™ where c(I'*) is the number of connected components of T'. It is straightforward that ¢, is a

multiplicative morphism, which turns (GW'™, ¢g) into a combinatorial Hopf algebra.
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By the fundamental theorem of combinatorial Hopf algebras (see [2], Theorem 4.1), there is a a unique

morphism

T (G, ) — (QSym, Q).
In the monomial basis it is given by

TFI) =D (Go)a(T™) M.

alEn

For a composition o = (o, g, ..., ax), the coefficient ((;)o(I'™) is determined by

(C)a(T™) = (% 0 (Pay @ Pay ® -+ @ pay,) 0 ARTHTY),

where p; is the projection on the i—th homogeneous component and A~ is the (k — 1)—fold coproduct map
of gW:m,

For a decorated graph I'* and a flag of subsets F: 0 = Fy C Fy C--- C Fy, = [n] let

k
Iv/F = | |15 /Fi-1.
i=1
us, the coefficient corresponding to a composition a = (a1, as, ..., qk n is a polynomial in ¢ determine
Th h flicient ding t iti i 1 ial i det ined
by
k
@a)= 3 Jla/foleentinbon = 57 gk,
Fitype(F)=ai=1 Ftype(F)=a

where

th (T /F) :=n = _ e(pr,, (T |, /Fiz1)).

i=1
Finally, we obtain

\Ilzn(rw) — Z qum(1—‘10/-7'-)‘[\4}_7 (31)
FEL(Penr—1)

where L(Pe™~!) is the face lattice of the standard permutohedron Pe™~1.

Theorem 3.3 Given a simple graph I' and m € N, let Qr ., be the corresponding m— graph polytope. Then,
the following identity holds

Fy(Qrom) = (),
where Fy(Qr,m) is the weighted integer points enumerator of the m— graph polytope Qr m, .

Proof From (2.1) and (3.1), it is suifficient to prove that for any flag F : 0 = Fy C Fy C -+ C Fy, = [n] and
1 <i<k it holds

e(pr, (I

Fi/Fic1)) = c(Hm(T)

F/Fic1).
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All edges in the decorated graph pr,,(I''|g, /F;—1) have decorations less than or equal to m, i.e. wv €

E (pr,,(I't|r,/Fi—1)) if and only if there is a path from u to v of the length not greater than m in the
graph T'|p, . Equivalently, there exists H € H,,,(I") such that u,v € H. O

From the general theorem for generalized permutohedra (see [6], Theorem 4.4), the f—polynomial of a

m— graph polytope Qr ,, is determined by the principal specialization of the enumerator F,(Qr ), i.e.

F@rom,a) = (=1)"ps' (T, (I1))(-1). (3.2)

Example 3.4 For the line graph Ly = ([4],{12,23,34}), we have
Fo(Qraa) = ¢* My +2¢°(My 3+ M3y + Ma5)
+2g(My,s + Ms1 + Mao +3Ma11 +3Mi 21 +3Mi1,2)
+2Ma o +6Mi 12 +6Mio1 +6Myq 1 +24My 111,
Fy(Qra2) = > My +2¢° (M 3+ 2M3 1 + My )
+2q(M3z1 4+ 2Ms o +5My 12 +4Mi a1 +3Mso 1)
+ 2My 10 +4Mi o1 +6Moq 1 +24My 100,
Fy(Qr,3) = My + ¢*(2M3 1 + 4M5 1 + 3M> »)
=q(2Ms31+ Moo+ 12M1 10+ 8Mi 21 +6Ma11)
+ A4Mioq +6Ma 11 +24My11,1-

Corresponding f —polynomials are determined by the principal specialization

f(Qri1,q) = ¢* +6q% +12¢ +8,
F(@Qri2,9) = ¢ + 8¢ +18q + 12,

f(Qr.3,9) = ¢® +9¢* +21q + 14.

Figure 2. Polytopes combinatorially equivalent to graph polytopes Qr,,1, Qr,,2 and Qr,,3-

In the sequel, we associate the sequence of quasysimmetric functions

(U (T, w2(Th),..., w2 1)

q

to a simple graph I" on n vertices. The following theorem answers how this sequence stabilizes.
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Theorem 3.5 Given a connected simple graph T', let m be the cardinality of the mazimal subset M C [n] such
that T'|pr =2 Lypgy . Then, for all k > |M| we have

wH(rt) = wMEN T,

Proof It is sufficient to prove that ¢ (pr,(I'*/F)) = ¢ (pr‘M|_1(F1/}")> for all k> |M]| and for all flags F of
subsets of the set [n]. Let us suppose that u,v € F;\ F;_; for the flag F : ) = Fy C F} C --- C F}, = [n]. Since
the maximal distance between vertices in the graph T' is m — 1, it follows that w(u,v) < |M|—1. If v and v
are connected in I'|r,, then u and v are not connected in pr,(I't/F) for ¢ < w(u,v), but they are connected
in pr,(I''/F) for all ¢ > w(u,v) > |M|—1. Similarly, if v and v are not connected in I'|F,, then u and v are

not connected in pry(I't/F) for any k. O

Example 3.6 Note that WX(K}) = WL(K}) for all k > 1, where K, is the complete graph on n vertices. For
the star graph Sy, it holds Wk(SY) = W2(S}) for all k> 2.

Corollary 3.7 The line graph Ly, is the only graph on n vertices such that (¥(L}), W2(L}), ..., Wi~ (L))

are different quasysimmetric functions.

For a graph I' on n vertices, the enumerator W}(I'!) is the Stanley chromatic symmetric function of I'

and the enumerator W~ !(I'!) is the chromatic quasisymmetric function introduced in [5]. There is only one
pair of graphs on five vertices with the same Stanley’s chromatic functions, but their chromatic quasisymmetric
functions are different. On the other hand, there are three pairs of graphs on six vertices whose chromatic

quasisymmetric functions are the same, but the corresponding Stanley’s chromatic functions are not.

Example 3.8 For graphs I'y and Ty, see Figure 3, with the same Stanley’s chromatic symmetric functions,

we have

\If(l)(Fl) = ‘I/(l)(FQ) =4Mi22 +4Mo10+4Moo1 +24Mi 11,0+ 24My 1,210 +24Mi200 +24Ma 100 + 120M1 10,11

Figure 3. Graphs I't and I'; with the same Stanley’s chromatic symmetric functions.

By Theorem 3.5, WE(T'y) = W&(T'y), for k > 2, and WE(I'y) = W3(I'y), for k > 3. Also, the following

equations hold

U3(Ty) = 4My o, + 8My 121 +16My 211 +24Mo 111+ 120My 1111,
U2(Ty) = 6Mi1,12+10My 121+ 16M1 21,1 +24Mo 111 + 120M71 11,11,
T3 (y) = 6Mi1,21 +16My 21,10 +24Mo 1110 +120My11,1,1-
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Example 3.9 For the graphs on Figure 4, we have that the corresponding chromatic quasisymmetric functions
are the same, i.e. W3(I's) = W3(Ty). Note that the coefficient by My 1112 in VE(Ts) is 24 and the coefficient
by M1 1,1,1,2 mn \118(1—‘4) 18 0, S0 \11(2)(1—‘3) 75 \I/%(F4)

sdydy

Figure 4. Graphs I's and I'y with the same chromatic quasisymmetric functions.
Moreover, in [6] it is shown that W}(T's) # Wi(Ty).

In the previous theorem we have shown how the sequence of quasysimmetric functions (\I/é(I‘l), \Ilg(l"l),
ceey ‘I/g_l(Fl)) associated to the graph T is stabilized. Now, the following question arises: What happens with

the sequence of polytopes (Qr.1,@r,2,-..,Qr n—1) associated to the graph I'. To answer this question, we will

need the following lemma.

Lemma 3.10 ([7], Lemma 2.4) Consider two polytopes P and Q. Let ¥ be an injection from the vertex set
of P to the vertex set of P+ Q such that, for every vertex w of P, (u) = u+ v, where v is a vertex of Q.
If ¢ is a bijection, then the normal fan of P coincides with the normal fan of P+ Q.

Proposition 3.11 Given a connected simple graph T', let m be the cardinality of the mazimal subset M C [n]
such that T'|pr = Lypg) . Then, for all k > |M| the polytopes Qrr and Qrp |a—1 are normally equivalent, i.e.

the normal fan of Qr  coincides with the normal fan of Qr rrj—1-

Proof From Theorem 3.5 and (3.2), we have that for all k > |M| polytopes Qr x and Qr |aj—1 have the same
f—polynomial. Specially, for all k& > [M]| polytopes Qrx and Qr, -1 have the same number of vertices.
Since

Qre = Qrjm-1 + Z As = Qrjm-1 + P,

SC[n],|M|+1<|S|<k+1
T'|s is connected

it holds that the map 1, from the previous lemma, is a bijection from the vertex set of Qr as|—1 to the vertex
set of Qr -1 + P. According to Lemma 3.10, the normal fan of the polytope Qr -1 coincides with the
normal fan of the polytope Qr jas -1 + P. O

Theorem 3.12 For a connected simple graph I' on n vertices and m € N, the polytopes

Qrm = Z Ag and Qﬁm = Z Ag.
SCln], |S|<m+1 SClnl, |S|<m+1
c(T|s)=1 Dls=Ls

are normally equivalent.
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Proof Let M C [n] be such that [M|=m and [y = L,. If all S C [n], |S| < m, satisfy I'|s = Lg|, the

statment is true. Further, let K be a subset of the maximal cardinality k& of the nonempty set

It is sufficient to prove that polytopes Qr,, and Qr ., — Ak are normally equivalent. By the previous theorem,
there exists k" < k such that polytopes Qr|, r and Qr|, r are normally equivalent. In particular, it means
that

Qri.k = Qrig k-1 + AK and Qr)w k-1

are normally equivalent polytopes. Since Qr|, j is the Minkowski summand of Qr ,, it implies that polytopes

Qr.m and Qr ., — Ag are normally equivalent as well. O

Corollary 3.13 For a connected simple graph I' on n wvertices, the polytopes

Qp = Z AS and Qllﬂ/ = Z As.
SC[n], SCln],
C(F‘S):l FlSEL\S\

are normally equivalent.

4. H—posets
For a given vertex v of a m—graph polytope Qr., there exists a poset P, (described in [10], Corollary 3.9)

whose linear extensions corresponding to the Weyl chambers are contained in the normal cone of the vertex v.
For example, if P, : (1 < 2,3 < 2) then the normal cone of the vertex v contains Weyl chambers determined
by 1 < a3 <29 and x3 < 1 < xo.

We can regard a poset P as a directed graph where j <p ¢ if and only if there is a directed path from
1 to j in that directed graph. In general, the reverse does not hold. If a directed graph is acyclic, i.e. there
exist no vertices vy, va, -+, v such that v; = vo — -+ — v; — v1, we can view this directed graph as a binary
relation whose transitive closure defines a poset.

For a given hypergraph H on the set [n], an 1— orientation of a hyperedge H € H is a pair (hy, Ha),
where hy is a distinguished element of H C [n], and Ho = H \ {h1}. An 1— orientation O of the hypegraph H
is the set of 1—orientations of all its hyperedges. Then we can construct an oriented multigraph H/O on the
set [n] with hy — ho for all hy € Hs satisfying (hq, H2) € O. Specially, if the oriented multigraph H/O has

no cycles we say that the 1—orientation O is acyclic. In that case H/QO is an oriented graph.
Example 4.1 For the hypergraph Ha(L4) = ([4],{12,23,34,123,234}) the 1-orientation

O1 = {(1,{2}), (2,{3}), (3, {4}), (1,{2,3}), (2, {3,4}}

is acyclic. The 1-orientation

0, = {(17 {2})7 (27 {3})7 (3, {4})7 (37 {17 2})7 (47 {27 3}}

is not acyclic, since H/Oy has cycle 2 -3 -4 — 2.
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Let O be an acyclic 1—orientation of a hypegraph H on the set [n]. The transitive closure of the acyclic
orientied graph H/O is a poset P such that for all H € H the restriction P|y is a poset whose the Hasse
diagram is a rooted tree. The root of this rooted tree is the first component of the 1—orientation (h1, H2) of a

hyperedge H in H.

Example 4.2 The 1-orientation Qs from the pervious example is acyclic; therefore, the transitive closure of
the orientied graph H/Os is the poset P(2 < 1,3 <1,4<1,3<2,4<2,4<3).

Definition 4.3 A poset P on the set [n] is an H— poset of a hypergraph H if
1. for all H € H the Hasse diagram of the restriction P|g is a rooted tree,

2. i<pj if and only if there exists H € H such that {i,j} C H, where i <p j means that there is no k € P
such that i <p k <p j.

Note that B—trees defined in [9] satisfy the requirements of the previous definition, so B—trees are the

special kind of H—posets.

Example 4.4 Let Ly be the line graph on the set [4] with edges {12,23,34}. For the hypergraph Hi(Ly4) there
are eight H— posets:
P17 PQ, P3a P47 P5a P67 P7, PS'

Also, there are twelve H— posets for the hypergraph Ho(Ly) :
P1,P2,P3, P4, Py, P10, P11, P12, P13, P14, P15, Pi6.
Finally, for the hypergraph H3(L4) we have fourteen H— posets:

P17 PQ; P37 P4, P93 PlOa P117 PlQ, P137 P147 P177 PlSa P193 P?O'

1 4 1 4
|| |
2 3 2 3 1 4 2 3
I 1 /N /\ | | I
3 2 3 1 2 4 2 4 3 1 2 4 3 1 4 1
I | \/ N/ IN\I I\I | |
4 1 4 1 3 2 1 3 4 2 3 2
Py Po P Py Psg P Pr Pg Pg P10
1 1 4 4

(R

2 3 1 4 1 4 1 4 4 4 1 1
/\ /N | | \/ \N/ | | | 1
4 1 4 3 2 2 3 2 3 2 3
| | /\ /\ | | Y R
3 2 4 1 3 3 2 3 2 3 2
P11 Pig Pig P14 Pis Pig P17 Pis Pig Pao

Figure 5. The Hasse diagrams of H— posets for Hi(L4),H2(L4) and Hs3(L4).
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Proposition 4.5 A poset P is an H— poset of a hypergraph H if and only if there exists an acyclic 1— orientation
O of H such that P is the transitive closure of H/O.

Proof If P is an H—poset then for every hyperedge H € H there is hy € H such that P|gy is the rooted
tree with the root hy. Note that (hy, H \ {h1}) is an 1—orientation of a hyperedge H and that the set of all
1—orientations of hyperedges forms an acyclic 1—orientation O of the hypergraph H, for if O is not acyclic
1—orientation, there exists a path v; — va — -+ — v — vpr1 = v; in the directed graph H/O. Then,
we have hyperedges Hip, Hs,...,H) with 1—orientations (vy, Hy \ {v1}), (va, Ha \ {v2}),..., (v, Hi \ {vx})
where v;4+1 € H; \ {v;} for 1 < i < k. Since 1—orientations of hyperedges arise from the poset P, it holds
v1 >p Vg >p -+ >p Ui >p U1, the contradiction. On the other hand, if O is an acyclic 1— orientation of H, the

transitive closure of H/O satisfies the requirements of the definition 4.3, so H/O is an H—poset. O

Let f : [n] = N be a function on the set of vertices of a poset P on [n]. We say that the function f
is a natural P—partition if f(:) < f(j) for v; <p v; and a strict P—partition if, additionally, f(i) < f(j) for
i <p j. Denote by A(P) the set of all natural P-partitions and by Ag(P) the set of strict P—partitions. Let

F(P) be the quasisymmetric enumerator of strict P— partitions defined by

F(P)= Y z;m)i@) Tim)-
feAo(P)

Proposition 4.6 For a simple connected graph T' on the set [n] and m > 1 it holds

W o= Y F(P), (4.1)

PeH (Hpm (T))
where F is the quasisymmetric enumerator of strict P— partitions.

Proof In [3], Theorem 12, is shown that vertices of an m—graph polytope Qr ., are naturally labeled by
acyclic 1—orientations of the hypergraph H,,(I"), i.e. that the cone Co defined by z; > z; for z; — z; in
H(I')/O 1is the cone of some vertex in the hypergraphical polytope Qr.,. If ; > z; and x; > z; then
x; > T, so the H—poset P which is the transitive closure of H,,(I")/O induces the same cone Cp. Since

U (T") counts points in the normal cones of vertices of the m—graph polytope Qr ., Equation (4.1) is true.

O
At the end we will describe H— posets corresponding to the sequence of polytopes (Qr.1,Qr,2, ..., Qr.n-1)

associated to a simple graph I'. The following theorem shows that from #H— posets of Hy(I') we can obtain
‘H—posets of the hypergraph Hy11(T"). Note that H—posets of H;(T') are transitive closure of acyclic orienta-
tions of graph T", and H—posets of H,,_1(T") are B—trees.

Theorem 4.7 Let P be an H— poset of the hypergraph Hy(T') with the property that P is not a H— poset of
Hi+1(I'). Then there exists an algorithm that creates H—posets of Hpy1(T') by adding some relation in the
‘H— poset P.

Proof Let P be an H—poset of Hg(T'). It follows that for all subsets H € Hg(T') the restriction P|g is a
rooted tree. As P is not an H—poset of Hgy1(T), we can find Hy € Hiy1(T) such that |Hy| = k4 1 and

P|m, is not a rooted tree. Since there exist at least two subsets of H; of the cardinality k& which belong to
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Hy(T'), there are vy,vy € Hy for which there is no element vz € Hy \ {v1,v2} satisfying either vy <Py, V3 OF
V2 <ply, U3- By adding, respectively, the relations v; < v and ve < v to the poset P we obtain new binary
relations on the set [n] whose transitive closures are new posets P; are Py such that Pi|gy, and Ps|m, are
rooted trees. If P; and Py are H—posets of the hypergraph Hyy1(I") we will stop this procedure. Otherwise,
we will continue in the same way, by taking a new hyperedge Hs € Hy11(T) of the cardinality k + 1 such that
P1|m, or Palm, is not a rooted tree and by repeating the previously described procedure. This process will end,

since there is a finite number of subsets of the cardinality k£ + 1 in the hypergraph Hy41(T). O

Example 4.8 Consider posets Pg, P1g, P1g, P1s and Poy from the previous example and recall that Pg is the
H —poset for Hy(L4), P10 and P1g are the H— posets for Ho(Ly4), P1s and Pog for Hs(Lys). From the H— poset
Ps we can obtain posets P1g and Pis by adding respectively relations 1 < 3 and 3 <1 in Pg since Pgl1,2,3}
is not a rooted tree. Similarly, from Pig we can obtain H— posets P1g and Pyy by adding respectively relations

4<1 and 1 <4 since Plg‘{1727374} is not a rooted tree.
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