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1. INTRODUCTION

Student-t distributions (StDs) are extremely appealing for financial applications, the single major reason being
that stylized facts of financial assets indicate that the corresponding empirical distribution is leptokurtic relative to
the normal distribution. (Note that the tails of the StD range from those of the [heavy-tailed] Cauchy distribution
and up to Gaussian tails as a limiting case). In this connection, applications of StDs on financial data date back to
Praetz (1972), Blattberg and Gonedes (1974), and Kon (1984), but these are for univariate i.i.d. observations. More
recently however, models with time-varying volatility have been employed in finance, with prime examples being
several versions of generalized autoregressive conditional heteroskedasticity (GARCH) models with increasing
flexibility, and in this regard applications of StDs with such models are numerous; for reviews of multivariate
GARCH models the reader is referred to Bauwens et al. (2006), Tsay (2006), Silvennoinen and Teräsvirta (2009),
and Boudt et al. (2019). In most of these reviews as well as in many other studies, the multivariate StD is con-
sistently suggested as innovation distribution; see for instance, Harvey et al. (1992), Pesaran and Pesaran (2007),
Santos et al. (2013), Rossi and Spazzini (2010), Diamantopoulos and Vrontos (2010), Creal et al. (2011), Wang
and Tsay (2013), Asai and So (2015), Dube et al. (2016), Zheng et al. (2018), Chib and Zeng (2020), Chen and
Gerlach (2021) and Hafner et al. (2020), among others.

In the aforementioned models and besides estimation of model parameters, there is also need for proper statisti-
cal validation of the model components, including the assumption of an StD for the law of unobserved innovations.
Thus specification testing for the innovation distribution is an indispensable aspect of model validation, thereby
propagating the need for a goodness-of-fit method for the StD. However, apart from a few informal diagnostic
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recipes which we will review further down the article, performing a rigorous goodness-of-fit test is a non-trivial task
in the multivariate setting, even for i.i.d. data. For instance, the classical Kolmogorov–Smirnov and Cramér–von
Mises tests require substantial numerical work such as numerical integration in higher dimension. Certain alterna-
tive test procedures also involve sophisticated numerical techniques; see e.g. the tests of Hallin et al. (2021) based
on the Wasserstein distance, of Meintanis et al. (2014), and Liang et al. (2019) based on the Rosenblatt trans-
form, and that of Khmaladze (2016), based on the celebrated transformation bearing this author’s name. Other
tests such as the Mahalanobis test of McAssey (2013) and the smooth test of Ducharme and de Micheaux (2020)
are relatively easier to apply but lack global consistency, while the general test of Ebner et al. (2018) based on
nearest-neighbors is for simple hypotheses without estimated parameters.

In this article we propose a goodness-of-fit test that is tailored specifically for StDs. The new test is easy to
implement, invariant with respect to affine transformations, and globally consistent. The remainder of the article
unfolds as follows. In Section 2 we introduce the new test and show consistency, while in Section 3 we discuss
estimation of parameters, all in the i.i.d. setting. In Section 4 we extend the method to a multivariate GARCH
model and thereby test for StD innovations. In the same section we also present the corresponding asymptotics.
The results of a Monte Carlo study illustrating the finite-sample properties of the method are presented in Section 5,
followed by empirical applications in Section 6. Finally, we end in Section 7 with conclusions and discussion.
Proofs are deferred to the Appendix, while the competitor test statistics and few extra Monte Carlo results are
included in Appendix S1.

2. TEST STATISTIC

Let (Xj, j = 1, … , n) be independent copies of an arbitrary random vector X ∈ Rp of fixed dimension p ≥ 2, and
suppose we wish to test the null hypothesis

0 ∶ The law of X ∈ p,𝜈 , (2.1)

where p,𝜈 =
{

Sp,𝜈(𝛿,V), (𝛿,V) ∈ Rp×M
p
+
}

denotes the family of StDs with fixed degrees of freedom 𝜈, arbitrary
location vector 𝛿, and scatter matrix V that belongs to the space M

p
+ of p × p positive definite matrices. Here we

focus attention on the ‘purely’ multivariate case (p > 1), but clearly the methods also apply to the univariate case.
Recall that if X ∼ Sp,𝜈(𝛿,V), then the corresponding density is given by

f
𝜈

(x) =
Γ((𝜈 + p)∕2)

(𝜋𝜈)p∕2Γ(𝜈∕2)|V|1∕2

(
1 + (x − 𝛿)⊤V−1(x − 𝛿)

𝜈

)−(𝜈+p)∕2

; (2.2)

see Kotz and Nadarajah (2004). Notice that for 𝜈 = 1, (2.2) reduces to the density of the multivariate
Cauchy distribution, while as 𝜈 → ∞, f

𝜈

(⋅) tends to the Gaussian density with mean 𝛿 and covariance matrix
equal to V .

Also if X ∼ Sp,𝜈(𝛿,V), then the random vector Y = (𝜈V)−1∕2(X − 𝛿) satisfies Y ∼ Sp,𝜈(0, 𝜈−1Ip), where Ip stands
for the identity matrix in the indicated dimension. Moreover, the characteristic function (CF) of Y is given by (see
Sutradhar, 1986)

𝜑
𝜇

(t) = 21−𝜇

Γ(𝜇)
||t||𝜇 K

𝜇

(||t||), (2.3)

where 𝜈 = 2𝜇, and K
𝜇

(⋅) stands for the MacDonald function of order 𝜇 > 0, defined by

K
𝜇

(x) =
(2

x

)
𝜇 Γ

(
𝜇 + 1

2

)

√
𝜋

∫

∞

0
(1 + u2)−(𝜇+(1∕2)) cos(xu)du.
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300 S. MEINTANIS ET AL.

Thus, and in view of the uniqueness of CFs, it is reasonable to base a test of the null hypothesis 0 figuring in
(2.1) on the test statistic

Tn,w = n
∫

Rp

|𝜑n(t) − 𝜑
𝜇

(t)|2w(t)dt, (2.4)

where w(t) = w(−t) ≥ 0 is a weight function which will be shortly specified, and

𝜑n(t) =
1
n

n∑

j=1

eit⊤̂Yj
, t ∈ R

p
, (2.5)

(
i =

√
−1

)
, is the empirical CF computed from the standardized observations

̂Yj =
̂V−1∕2

n

(
Xj − ̂

𝛿n

)

√
𝜈

, j = 1, … , n, (2.6)

on the basis of estimators ̂
𝛿n and ̂Vn of the parameters 𝛿 and V respectively. In (2.6), ̂Vn is tacitly assumed to be

non-singular, and ̂V−1∕2
n denotes the unique symmetric square root of ̂V−1

n . Rejection of the null hypothesis 0 is
for large values of Tn,w.

In our test we will make use of the multivariate inversion theorem

fX(x) =
1

(2𝜋)p ∫Rp

cos
(
t⊤x

)
𝜑X(t)dt, (2.7)

whereby the density fX(⋅) corresponding to a real and intergrable CF 𝜑X(⋅)may be obtained by inversion from this
CF; see Ushakov (1999, Theorem 1.8.5).

By straightforward algebra it follows that if we set w(t) = 𝜑
𝜇

(t)∕(2𝜋)p as weight function in (2.4) and use (2.7),
then the test statistic, say Tn,𝜇, may be written as

Tn,𝜇 =
1
n

n∑

j,k=1

f
𝜇

(
̂Yj − ̂Yk

)
− 2

n∑

j=1

f (2)
𝜇

(
̂Yj

)
+ nf (3)

𝜇

(0), (2.8)

where

f
𝜇

(x) =
Γ
(
𝜇 + p

2

)

𝜋

p
2Γ(𝜇)

(
1 + ||x||2

)−(𝜇+ p
2
)
, x ∈ R

p
, (2.9)

is the density corresponding to the CF given by (2.3), f (2)
𝜇

(⋅) denotes the density of Y1 + Y2, and f (3)
𝜇

(⋅) denotes the
density of Y1 + Y2 + Y3, with (Yk, k = 1, 2, 3), being independent random vectors with density f

𝜇

(⋅).
In this connection, the density of Y1 + Y2 has been obtained by Berg and Vignat (2010) as

f (2)
𝜇

(x) =
∞∑

k=0

ck,𝜇𝜁k,2𝜇(x), (2.10)

where

ck,𝜇 =
1

B(𝜇, 𝜇)
Γ
( p

2
+ k

)

Γ
( p

2

)
k! ∫

1

0
u𝜇+ p

2
−1(1 − u)𝜇+

p
2
−1(1 − u + u2)kdu,
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GOODNESS-OF-FIT TESTS FOR THE MULTIVARIATE STUDENT-T DISTRIBUTION 301

Table I. Values of f (3)
𝜇

(0) for different values of 𝜇 and p

𝜇 1 1.5 2 2.5 3 5 7.5 15 25

p = 2 f (3)
𝜇

(0) 0.057 0.104 0.153 0.204 0.256 0.465 0.728 1.522 2.583

p = 5 f (3)
𝜇

(0) 0.002 0.006 0.014 0.026 0.043 0.171 0.497 2.990 11.004

and

𝜁k,𝜂(x) =
Γ
( p

2

)

𝜋

p
2 B

(
𝜂, k + p

2

)
||x||2k

(1 + ||x||2)k+𝜂+
p
2

.

In practice, we approximated the infinite series in (2.10), by truncation of the corresponding sum at K terms, with
K = 50 being chosen empirically.

Finally by using polar (p = 2), spherical (p = 3) or hyper-spherical (p > 3), coordinates, it follows that,

(2𝜋)pf (3)
𝜇

(0) =
∫

Rp

𝜑

3
𝜇

(t)dt

=
(

21−𝜇

Γ(𝜇)

)3

2𝜋
p
2

p−2∏

k=1

Γ
( p−k

2

)

Γ
( p−k+1

2

)
∫

∞

0
u3𝜇+p−1K3

𝜇

(u)du, (2.11)

which involves just a single univariate integral, where we use the convention
∏0

k=1 ≡ 1.
In Table I we give values of f (3)

𝜇

(0) for different values of 𝜇 and p.

Remark 2.1. The fact that the CF given by (2.3) is integrable, which is the condition for the inversion theorem in
(2.7) to hold true, follows by direct calculation analogous to that leading to (2.11) that gives,

∫
Rp

𝜑
𝜇

(t)dt = 𝜋

p
2

2p

Γ(𝜇)
Γ
(p

2

)
Γ
(

p + 2𝜇
2

) p−2∏

k=1

Γ
( p−k

2

)

Γ
( p−k+1

2

) , p ≥ 2. (2.12)

We now consider the limit behavior of the test statistics Tn,w figuring in (2.4) under general conditions on the

law of X and on the weight function w(⋅). Specifically we assume that the estimators ̂
𝛿n and ̂Vn satisfy,

̂
𝛿n → 𝛿X ,

̂Vn → VX ,

a.s. as n → ∞, for some (finite) 𝛿X ∈ Rp, and some non-singular matrix VX . Also suppose that the weight function
is positive except for a set of measure zero and that ∫

Rp w(t)dt < ∞, and write 𝜑X(⋅) for the CF of X. Then we
have the following result:

Proposition 2.2. Under the standing assumptions we have

Tn,w

n
→
∫

Rp

||||||
𝜑X

(
V−1∕2t
√
𝜈

)

− e
it⊤ V−1∕2

√
𝜈

𝛿

𝜑
𝜇

(t)
||||||

2

w(t)dt, (2.13)

a.s. as n →∞.
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302 S. MEINTANIS ET AL.

Proof. Recall from (2.4) that

Tn,w

n
=
∫

Rp

|𝜑n(t) − 𝜑
𝜇

(t)|2w(t)dt, (2.14)

while the strong uniform consistency of the empirical CF in bounded intervals (see Csörgő, 1981) entails

𝜑n(t)→ e
−it⊤ V−1∕2

√
𝜈

𝛿

𝜑X

(
V−1∕2t
√
𝜈

)

,

a.s. as n → ∞. Consequently, since |𝜑n(t) − 𝜑
𝜇

(t)|2 ≤ 4, an application of Lebesgue’s theorem of dominated
convergence on (2.14) yields (2.13). ◾

Since w > 0, the right-hand side of (2.13) is positive unless

𝜑X

(
V−1∕2t
√
𝜈

)

= e
it⊤ V−1∕2

√
𝜈

𝛿

𝜑
𝜇

(t),

identically in t, which is equivalent to

𝜑X(t) = eit⊤𝛿 1

2
𝜈

2
−1Γ

(
𝜈

2

) ||
√
𝜈Vt||

𝜈

2 K 𝜈

2

(
||
√
𝜈Vt||

)
. (2.15)

The quantity in the right-hand side of (2.15) is the CF of the StD with density given by (2.2), and thus by the
uniqueness of CFs, the test which rejects the null hypothesis0 in (2.1) for large values of Tn,w is consistent against
such alternative distributions.

3. PARAMETER ESTIMATION

The family p,𝜈 of StDs is affine invariant (or simply invariant for short) meaning that if X ∼ Sp,𝜈(𝛿,V), then
AX + b ∼ Sp,𝜈(A𝛿 + b,AVA⊤), for each p × p non-singular matrix A and b ∈ Rp. Therefore it is good statistical
practice to require that any test statistic for p,𝜈 , say Tn,𝜒n

, with 𝜒n = (X1, … ,Xn) being the data vector, also be
invariant, meaning that Tn,𝜒n

= Tn,A𝜒n+b, for each (b,A). Such a property will guarantee that the decisions about
rejection of the null hypothesis reached on the basis of this test statistic either by the use of the observations 𝜒n or
by A𝜒n + b are identical. For detailed discussions of the notion of invariant tests we refer to Henze (2002), Ebner
and Henze (2020), and Ducharme and de Micheaux (2020).

With invariance in mind we now discuss the estimation of (𝛿,V). Specifically we assume that the estimators
̂
𝛿n ∶= ̂

𝛿n,𝜒n
and ̂Vn ∶= ̂Vn,𝜒n

satisfy,

̂
𝛿n,A𝜒n+b = Â𝛿n,𝜒n

+ b, (3.1)

and

̂Vn,A𝜒n+b = ÂVn,𝜒n
A⊤; (3.2)

see Bilodeau and Brenner (1999, chapter 13). In this connection, the moment estimators

̂
𝛿n = Xn,

̂Vn =
𝜈 − 2
𝜈

Sn, (𝜈 > 2), (3.3)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 298–319 (2024)
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GOODNESS-OF-FIT TESTS FOR THE MULTIVARIATE STUDENT-T DISTRIBUTION 303

with Xn = n−1∑n
j=1Xj and Sn = n−1∑n

j=1(Xj −Xn)(Xj − Xn)⊤, typically satisfy (3.1) and (3.2). Maximum likelihood
estimators also satisfy (3.1) and (3.2). (For estimation methods in the family of StDs see Kotz and Nadarajah, 2004,
chapter 10, Liu, 1997, and Nadarajah and Kotz, 2008). With such invariant estimators and with a little reflection
on (2.8), it follows that the test statistic Tn,𝜇 depends on the observations solely via

̂Y⊤

j
̂Yk =

(
Xj − ̂

𝛿n

)
⊤

̂V−1
n

(
Xk − ̂

𝛿n

)
, j, k = 1, … , n, (3.4)

which are in turn invariant given that (3.1) and (3.2) are satisfied, and consequently the test statistic Tn,𝜇 is also

rendered invariant. Also notice that, due to (3.4), the square root of the matrix ̂Vn is not needed for the compu-
tation of Tn,𝜇. A further advantage of using an invariant test such as Tn,𝜇 is that the (finite-sample or asymptotic)
distribution of Tn,𝜇 does not depend on the actual values of (𝛿,V) which can be set equal to their standard values
(0, Ip). We will study the asymptotic null distribution of the test statistic in the next section, whereby we consider
the case of testing for the law of innovations in a GARCH model, a setting more general than the current setting,
and for which the current i.i.d. setting, with fixed location at zero, may be viewed as a special case.

4. TEST FOR A GARCH MODEL WITH STUDENT-T INNOVATIONS

We propose an extension of the suggested method to test the validity of a Student-t innovation distribution in a
given (multivariate) GARCH model, against general alternative distributions. In this connection, a wide variety
of diagnostic procedures as well as other informal tests for certain modeling aspects within GARCH models have
been applied, including likelihood criteria and information criteria (Rossi and Spazzini, 2010, Creal et al., 2011),
Ljung-Box, LM and portmanteau tests (Tsay, 2006; Bauwens et al., 2006; Wang and Tsay, 2013), individual Q-Q
plots and probability integral transform plots (Pesaran and Pesaran, 2007; Dube et al., 2016) as well as sample
autocorrelations (Zheng et al., 2018). We also refer to the methods of Francq and Zakoïan (2022) for testing
assumptions on specific characteristics of the innovation distribution, such as quantiles, moments, and asymmetry.
These procedures however are either heuristic in nature, or indirectly test the model itself by targeting specific
model-aspects, or test one fixed model against another fixed model, and thus they are not specifically aimed at the
law of innovations. For rigorous GARCH-innovation tests we refer to Klar et al. (2012), Lee et al. (2015), Ghoudi
and Rémillard (2014), and Dalla et al. (2017), all in the univariate setting. On the other hand and apart from the test
of Henze et al. (2019) for the Gaussian distribution, there is relative scarcity of rigorous testing procedures tailored
particularly to the law of innovations in multivariate GARCH models. In fact, and to the best of our knowledge,
there exist only a couple of other existing tests, the first being that of Bai and Chen (2008), which involves the
application of the Rosenblatt transform to reduce the data to p approximately independent uniform [0,1] variates
and the Khmaladze transform that removes the effect of estimation. Thus this method is not so straightforward to
apply, at least in the context of testing for GARCH innovations.

The other competing procedure can be found in the recent paper of Luo et al. (2023), and depends on a Stein-type
characterization involving the score function. This method has the advantage of not being tailored, but applica-
ble to any distribution under test provided of course that the underlying density (assumed to exist) is not too
heavy-tailed, and that both density and score functions are sufficiently smooth, while for our test we only need the
CF, which always exists, and moment assumptions are incidental in our case and due to the estimation step pre-
ceding the test. Moreover, and unlike our method, the test of Luo et al. (2023) requires data subsampling, and in
the i.i.d. case is apparently not affine invariant, which implies potential dependence of the finite-sample distribu-
tion on the actual location vector and scatter matrix. These remarks notwithstanding, the test of Luo et al. (2023)
remains a formidable competitor, and further comparison with our test will be discussed by means of Monte Carlo
simulations in Section 5.

In developing our test we adopt as a reference GARCH model the CCC-GARCH of Bollerslev (1990) and
Jeantheau (1998). This specification has been found to perform well in a few applications, see for instance Santos
et al. (2013), but here it is adopted as a sort of ‘threshold’ model because of its simplicity. Otherwise our asymptotic

J. Time Ser. Anal. 45: 298–319 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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304 S. MEINTANIS ET AL.

results do not make any specific use of the CCC-GARCH structure and thus hold true for the general MGARCH
model defined in section 10.4 of Francq and Zakoïan (2019). In this connection extension of the test procedure
to similar models seems to be in principle straightforward: Once the residual vector is obtained under whatever
GARCH specification, the test is readily applied on this vector, and on the practical level the finite-sample behavior
of the test is expected to be analogous. We will however come back to this issue in Section 6 where we discuss
results for the diagonal CCC-GARCH, the non-diagonal ECCC-GARCH, and the dynamic conditional correlation
model, the DCC-GARCH.

This remark notwithstanding, we point out that the asymptotic as well as the finite-sample behavior of our test is
conditioned on the existence of a proper limit distribution of the estimators involved for the GARCH parameters;
remark 10.6 of Francq and Zakoïan (2019) is relevant here. Thus caution should be exercised when applying our
test to alternative GARCH specifications, such as the DCC-GARCH model, for which the domain of stationarity
as well as the existence of a proper limit behavior of the corresponding estimators is still under scrutiny. In this
regard it should be pointed out that alternative estimation methods could also have been employed for the GARCH
parameters, but then the corresponding conditions for the limit null distribution of the test statistic should be analo-
gously adjusted; by way of example we refer to the equation-by-equation estimator of Francq and Zakoïan (2016)
where, for instance, the moment assumption for the law of GARCH errors is more restrictive than the one adopted
herein (see condition (RA7) in Appendix A.1). For a more technical discussion we refer to Appendix A.1.

4.1. Setup

Assume that the observations
(
Xj, j = 1, … , n

)
, arise from a multivariate GARCH model defined by

Xj = Σ
1∕2
j 𝜀j, (4.1)

where (𝜀j, j = 1, … , n), are i.i.d. p-dimensional random vectors with mean zero and unit covariance matrix,
and Σj ∶= Cov(Xj|j−1) = Σ

(
Xj−1,Xj−2, … ; 𝜃

)
, is a symmetric positive definite matrix of dimension p × p that

depends on the past via a parameter vector 𝜃 to be specified below.
For the aforementioned CCC-GARCH model of Bollerslev (1990) and Jeantheau (1998), the matrix Σj is

specified by

Σj(𝜃, r, s) = Dj(𝜃)R(𝜃)Dj(𝜃), (4.2)

where R(⋅) is a p× p constant correlation matrix and Dj(⋅) = diag(𝜎1,j, … , 𝜎p,j) is a diagonal matrix with elements
satisfying

𝜎j =
(
𝜎

2
1,j, … , 𝜎

2
p,j

)
⊤ = 𝜔 +

r∑

k=1

AkX(2)
j−k +

s∑

k=1

Bk𝜎j−k, (4.3)

with X(2)
j =

(
X2

1,j, … ,X2
p,j

)
⊤

. The parameter 𝜃 figuring in (4.2) comprises the elements of 𝜔 which is a p×1 vector
of positive elements, the elements of R, and the elements of the p × p matrices Ak and Bk which are by definition
non-negative.

Under the setting (4.1)–(4.3) we wish to test that for some 𝜃 = 𝜃0 the null hypothesis 0 stated in (2.1) holds
true for the common law of the innovations (𝜀j, j = 1, … , n). To keep close to the standard GARCH setting we
assume that the innovations have zero mean and unit covariance. (This corresponds to the specification (𝛿,V) =
(0, ((𝜈 − 2)∕𝜈)Ip), in the original null hypothesis stated in (2.1)).

In this connection, any test aiming at the unobserved innovations should be actually applied on the corresponding
residuals

𝜀j = ̃Σ
−1∕2

j (̂𝜃n)Xj, j = 1, … , n, (4.4)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 298–319 (2024)
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obtained on the basis of a consistent estimator ̂𝜃n of 𝜃 that uses
(
X⊤

j−1,X
⊤

j−2, …
)
⊤

as input data. Note however that
Σj(𝜃) depends on {Xk, −∞ < k ≤ j−1}, whereas we only observe X1, … ,Xn. Hence, for calculating the residuals

we consider ̃Σj(̂𝜃n) defined as Σj(̂𝜃n), whereby we also employ initial values
(
̃X⊤

0 , … ,
̃X⊤

1−r, 𝜎
⊤

0 , … , 𝜎

⊤

1−s

)
⊤

to start
the estimation process.

4.2. Asymptotic properties

In this part we obtain the limit null distribution of the test statistic. In doing so we also provide the missing
asymptotics for the specification test of Klar et al. (2012) corresponding to univariate GARCH models. To keep
close to the test statistic as defined by (2.4)–(2.6) we formulate our test as

n,w = n
∫

Rp

|𝜙n(t) − 𝜑
𝜇

(t)|2w(t)dt, (4.5)

and use the same weight function, where

𝜙n(t) =
1
n

n∑

j=1

eit⊤ z̃j
, t ∈ R

p
, (4.6)

is the empirical CF of the standardized residuals z̃j ∶= 𝜀j∕
√
𝜈 − 2, with 𝜀j defined in (4.4) and 𝜑

𝜇

(t) denotes the

CF figuring in (2.3). Thus the test statistic is computed as n,w ∶= Tn,𝜇 (̃z1, … , z̃n) where Tn,𝜇(̂Y1, … ,
̂Yn) denotes

the ‘i.i.d.’ test statistic defined in (2.8).
We first state the result for the limit null distribution of the test statistic in the GARCH case.

Theorem 4.1. Let the assumptions RA1–RA7 stated in the Appendix be satisfied. Moreover assume that the weight
function satisfies ∫

Rp ||t||4w(t)dt < ∞.1 Then under the null hypothesis there exists a zero mean Gaussian element
 with covariance kernel KG(s, t), such that n,w → ||||L2 .

The following corollary gives the asymptotic null distribution of the test statistic in the i.i.d. case.

Corollary 4.2. Under the null hypothesis there exists a zero mean Gaussian element 0 with covariance kernel
KG0

(s, t) = EUn(t)Un(s), such that Tn,w → ||0||L2 , where Un is defined in (A2) of the Appendix.

The proofs of Theorem 4.1 and Corollary 4.2 are postponed to the Appendix. In the Appendix we also provide
the expression for the covariance kernel of Theorem 4.1; see (A5).

As already stated, the test statistic itself as well as its asymptotics have been developed under the assumption
that the degrees of freedom of the StD under test is fixed (known) in advance. An extension of the test formulated
as in (4.5) to the case of estimated degrees of freedom is clear: We replace 𝜇 by its estimate 𝜇n, set the weight
function w proportional to 𝜑

𝜇n
, and carry out the computation of the test as in (2.8). The only problem is the extra

randomness introduced in the weight function, which will be discussed in the next paragraph. Alternatively, and
as far as practical applications are concerned, the test may be applied with a few fixed degrees of freedom, and
the appropriate model can then be decided on the basis of likelihood or other model-choice criteria performed
on non-rejected models; see for instance Hafner et al. (2020) and Wang and Tsay (2013). For a rigorous model
selection procedure based on the CF we refer to Jiménez-Gamero et al. (2016).

In this connection and to avoid the problem with the random weight function when 𝜈 is unknown which could
affect asymptotics, we point out that other weight functions, besides the CF 𝜑

𝜇

(⋅) under the null hypothesis, may

1 It may be shown that the Student-t CF 𝜑
𝜇

(⋅) satisfies this condition.

J. Time Ser. Anal. 45: 298–319 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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306 S. MEINTANIS ET AL.

be used in the test statistic. Specifically if the weight function for Tn,w in (2.4) is set equal to the CF of any StD
with 𝜈

′ ≠ 𝜈 degrees of freedom, all computations follow through by using the distribution of two independent but
not necessarily identically distributed Student-t random vectors obtained by Berg and Vignat (2010). Specifically
let 𝜈n be an estimate of 𝜈, and set 𝜇n = 𝜈n∕2. Then following analogous steps to those leading to (2.8) the test
statistic is readily reduced to

̂Tn,𝜇′ =
1
n

n∑

j,k=1

f
𝜇
′

(
̂Yj − ̂Yk

)
− 2

n∑

j=1

f (2)
𝜇n,𝜇

′

(
̂Yj

)
+ nf (3)

𝜇n,𝜇
′ (0), (4.7)

where f
𝜇
′ (⋅) is the density defined in (2.9) with 𝜇 replaced by 𝜇

′ (𝜈′ = 2𝜇′), f (2)
𝜇,𝜇

′ (⋅) denotes the density of Y1 + Y2,

with Y1 (resp. Y2) following a StD with 𝜈 (resp. 𝜈′) degrees of freedom, and independent, and f (3)
𝜇,𝜇

′ (⋅) denotes the

density of Y1 + Y2 + Y3, with (Yk, k = 1, 2), as in f (2)
𝜇,𝜇

′ (⋅), and Y3 an independent copy of Y1. This feature provides
the test with a certain flexibility, a fact that is illustrated by means of the additional Monte Carlo results contained
in Tables S5–S8.

The type of weight function w(⋅) adopted herein goes back to Epps (2005) who associates the choice of w(⋅)
with the CF of the family being tested under the null. In fact it is precisely this choice, coupled with the inversion
theorem for CFs and the results of Berg and Vignat (2010), that leads to the closed-form of the test statistics
figuring in (2.8) and (4.7), and this computational expedience is no minor issue in the multivariate setting. Other
aspects of the test that are safeguarded by choosing 𝜑

𝜇

(⋅) as weight function are consistency and affine invariance.
In this connection notice that the arguments leading to the consistency of the test require, among other things,
that the weight function should be positive for all t ∈ Rp; see the conditions preceding the statement of Prop. 2.2.
Moreover invariance follows from the fact that by using 𝜑

𝜇

(⋅) in w(⋅), results in a test statistic that depends solely
on the so-called Mahalanobis distances defined in (3.4), thus rendering Tn,𝜇 affine invariant. These considerations
notwithstanding, there is reasonable concern as to how the choice of w(⋅) affects the power of the test. There exist
some works in this line of research for testing univariate laws in the i.i.d. setting; see for instance Tenreiro (2019),
Ebner and Henze (2021) and Tenreiro (2022). However, when it comes to multivariate distributions, the only
available results for choosing w(⋅) are for testing normality and yet these results are based almost exclusively on
Monte Carlo experiments; see Tenreiro (2009) and Tenreiro (2011).

To see where the problem lies we note that the limit null distribution of Tn,w is that of
∑∞

j=1𝜆j
2
j , where

(j, j ≥ 1) are i.i.d. standard normal random variables. In turn 𝜆1 ≤ 𝜆2 ≤ · · · , are the eigenvalues of a com-
plicated integral equation depending on the weight function w(⋅), the distribution being tested under the null as
well as on the estimation of any parameters involved. Regarding power properties, the notion of Bahadur effi-
ciency is often the preferred notion, but such efficiency requires calculation of the eigenvalues, and in particular
the knowledge of 𝜆1, the largest eigenvalue, which however is rarely available. The corresponding technical anal-
ysis is highly non-trivial and in general it remains an open problem, but some results in this direction are available
in Meintanis et al. (2022) and Móri et al. (2021), again for testing multivariate normality. Here instead we adopt
the pragmatic approach of observing how the finite-sample power of the test varies with the weight function, and
thus making choices. In this regard we refer to the Monte Carlo results in the Appendix S1 which indicate that the
power varies to some extent with different degrees of freedom in the weight function w(⋅), sometimes rendering
the test more powerful for smaller degrees while for other alternatives larger degrees of freedom in w(⋅) are prefer-
able. In view of this behavior taking the weight function w(⋅) proportional to the CF of the particular StD being
tested, i.e. with the same degrees of freedom, appears to be a good compromise. Nevertheless our results are not
thorough and more work is needed in this direction.

5. MONTE CARLO STUDY

We present a study of the power performance of our test as compared to the following competitors: the test based on
the Wasserstein metric proposed in Hallin et al. (2021) (denoted as W), the kernel Stein discrepancy- (KSD) based

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 298–319 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12713
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GOODNESS-OF-FIT TESTS FOR THE MULTIVARIATE STUDENT-T DISTRIBUTION 307

test proposed in Luo et al. (2023) (denoted as L), and the tests based on Rosenblatt transform for three different
weight functions, denoted as (Rk, k = 1, 2, 3), which correspond to the statistics denoted as (Tk, k = 1, 2, 3), in
the original paper of Meintanis et al. (2014). The test statistics are available in the Appendix S1. All tests were
performed at 5% the level of significance.

The list of considered alternatives includes the following multivariate distributions: Student t, normal (Np),
Laplace (LAp) (see Kotz et al., 2012), generalized Gaussian (GNp) (see Goodman and Kotz, 1973; Nardon
and Pianca, 2009), skew-normal SNp (see Arellano-Valle and Azzalini, 2008) and skew-t STp (see Bauwens
et al., 2006).

However, the limit null distributions derived in Theorem 4.1 and Corollary 4.2 are extremely complicated to use
for actual test implementation; see for instance Meintanis and Swanepoel (2007). Thus we resort to resampling
to approximate the actual distribution of the new test statistics. In the case of i.i.d. observations and due to the
affine invariance property of the test discussed in Section 3, a simple Monte Carlo approximation is enough to
compute critical points and carry out the test. On the other hand, in the cases such as for GARCH observations,
where there is additional uncertainty involved in the test statistic due to parameter estimation a further bootstrap
cycle of resampling is required. Here we use the warp-speed version of the parametric bootstrap method suggested
by Giacomini et al. (2013). We note that the parametric bootstrap is specifically designed for test statistics with
unknown parameters, and for dynamic models has been validated by Rémillard (2011). This bootstrap procedure
is described in the Appendix S1.

5.1. Results in the i.i.d. case

Based on i.i.d. samples of sizes n = 25, 50 and n = 100, we test the null hypotheses that the sample comes from
a p-variate Student distribution with 5 and 10 degrees of freedom.

All tests are applied to the standardized data, where the location and scatter parameters are estimated using the
method of moments. The empirical sizes and powers are calculated using the Monte Carlo method with 10,000
replications. However since the tests based on the Rosenblatt transform are not distribution-free, the aforemen-
tioned warp-speed parametric bootstrap procedure with 5000 resamples is employed. The results are presented in
Tables S1 and S2 (p = 2) and Tables S3 and S4 (p = 5).

5.2. Results in the GARCH case

Based on GARCH time series with 200 and 500 observations we test the null hypotheses that the innovations
follow p-variate Student distribution with 5 and 10 degrees of freedom with unit covariance matrix.

The empirical sizes and powers are calculated using the warp-speed parametric bootstrap method with 5000
replicates. Here for dimension p = 5 we excluded the Rosenblatt transform tests due to computational complexity
in higher dimensions. All tests are applied using the QMLE method for estimation of the GARCH parameters; see
e.g. Francq and Zakoïan (2019).

The choice of considered models is the following: a bivariate GARCH(1,1) model with 𝜔 = (0.05, 0.1), A =
diag(0.06, 0.08), B = diag(0.05, 0.4), and the 5-variate GARCH(1,1) model with 𝜔 = (0.03, 0.02, 0.02, 0.03, 0.01),
A = diag(0.1, 0.1, 0.1, 0.1, 0.1), B = diag(0.1, 0.1, 0.2, 0.3, 0.3), with the matrix R in each case having all
off-diagonal elements equal to 0.5. The results are presented in Table II. GARCH models with alternative param-
eter settings were also tried. The corresponding Monte Carlo results obtained are very similar and are shown in
Table S9.

We now compare the performance of the W test, the (Rk, k = 1, 2, 3) tests and our test with the L test of Luo
et al. (2023) by means of a Monte Carlo experiment employing precisely the GARCH models and parameter
settings adopted in that paper. These models correspond to the non-diagonal version of the CCC-GARCH, i.e. the
ECCC-GARCH, with dimensions p = 2 and p = 5, and the precise values of the GARCH parameters may be
found in section 4.3 of Luo et al. (2023). The results are presented in Table III.

J. Time Ser. Anal. 45: 298–319 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12713 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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308 S. MEINTANIS ET AL.

Table II. Empirical percentage of rejection for CCC-GARCH observations

p = 2 p = 5

n 0 Alt. R1 R2 R3 W L  0 Alt. W L 

200 t2,10 t2,10 0.04 0.05 0.05 0.05 0.05 0.04 t5,10 t5,10 0.05 0.05 0.05
200 t2,10 t2,5 0.07 0.05 0.05 0.30 0.35 0.35 t5,10 t5,5 0.54 0.31 0.75

200 t2,10 LA2 0.15 0.05 0.06 0.82 0.95 0.95 t5,10 LA5 1.00 0.95 1.00
200 t2,10 GN2 1.00 0.05 0.11 1.00 1.00 1.00 t5,10 GN5 1.00 1.00 1.00

200 t2,10 N2 0.06 0.06 0.05 0.07 0.10 0.12 t5,10 N5 0.04 0.06 0.41
200 t2,10 SN2 0.08 0.07 0.07 0.26 0.49 0.49 t5,10 SN5 0.18 0.26 0.85

200 t2,10 ST2 0.06 0.05 0.05 0.15 0.27 0.24 t5,10 ST5 0.43 0.51 0.72
200 t2,5 t2,5 0.05 0.05 0.05 0.06 0.06 0.05 t5,5 t5,5 0.05 0.05 0.06

200 t2,5 t2,10 0.06 0.05 0.06 0.07 0.09 0.25 t5,5 t5,10 0.18 0.04 0.70

200 t2,5 LA2 0.07 0.05 0.05 0.14 0.26 0.32 t2,5 LA2 0.51 0.10 1.00

200 t2,5 GN2 0.99 0.06 0.09 1.00 1.00 1.00 t5,5 GN5 1.00 0.85 1.00

200 t2,5 N2 0.06 0.05 0.05 0.34 0.42 0.78 t5,5 N5 0.79 0.08 1.00

200 t2,5 SN2 0.11 0.08 0.08 0.67 0.77 0.94 t5,5 SN5 0.97 0.35 1.00

200 t2,5 ST2 0.09 0.07 0.07 0.19 0.35 0.35 t5,5 ST5 1.00 1.00 1.00

500 t2,10 t2,10 0.05 0.05 0.05 0.06 0.05 0.05 t5,10 t5,10 0.05 0.05 0.05

500 t2,10 t2,5 0.11 0.05 0.06 0.68 0.70 0.73 t5,10 t5,5 0.93 0.75 0.99

500 t2,10 LA2 0.67 0.05 0.06 1.00 1.00 1.00 t5,10 LA5 1.00 1.00 1.00

500 t2,10 GN2 1.00 0.09 0.62 1.00 1.00 1.00 t5,10 GN5 1.00 1.00 1.00

500 t2,10 N2 0.06 0.05 0.05 0.11 0.24 0.31 t5,10 N5 0.09 0.13 0.92

500 t2,10 SN2 0.14 0.08 0.09 0.93 0.93 0.93 t5,10 SN5 0.87 0.77 1.00

500 t2,10 ST2 0.11 0.07 0.07 0.55 0.64 0.60 t5,10 ST5 0.97 0.94 0.99

500 t2,5 t2,5 0.05 0.05 0.05 0.05 0.05 0.05 t5,5 t5,5 0.05 0.05 0.05

500 t2,5 t2,10 0.07 0.08 0.08 0.36 0.39 0.69 t5,5 t5,10 0.91 0.10 0.99

500 t2,5 LA2 0.12 0.05 0.06 0.77 0.78 0.85 t5,5 LA5 1.00 0.54 1.00

500 t2,5 GN2 1.00 0.09 0.26 1.00 1.00 1.00 t5,5 GN5 1.00 1.00 1.00

500 t2,5 N2 0.12 0.06 0.05 0.98 0.98 1.00 t5,5 N5 1.00 0.68 1.00

500 t2,5 SN2 0.30 0.10 0.12 1.00 1.00 1.00 t5,5 SN5 1.00 0.99 1.00

500 t2,5 ST2 0.15 0.10 0.11 0.68 0.78 0.74 t5,5 ST5 1.00 1.00 1.00

5.3. Discussion

From the empirical sizes, we can see that all tests are well calibrated. In the i.i.d case our test is compara-
ble to the Wasserstein distance test, the KSD based test, and the Rosenblatt transform test R1, while the other
tests based on the Rosenblatt transform are much less powerful. It is worth mentioning that our test is signifi-
cantly better than competitors in the case of the standard normal alternative and the Student alternative with more
degrees of freedom, while being slightly behind some of the competitors for the Laplace and generalized Gaussian
distributions.

Both CCC-GARCH (Table II) and ECCC-GARCH (Table III) settings suggest that the new test is the most
powerful nearly uniformly over sample size, dimension and type of alternative, and when p = 5 often by a wide
margin, while in the cases that the  test is not the best test, the power differential is mostly quite small.

Moreover, the similarity of results in Tables II and III, and those in Table S9, suggests that the GARCH model
parameters do not have a strong impact on the power performance of the considered tests. This however only
applies to the above mentioned GARCH specifications, while analogous Monte Carlo trials showed that test per-
formance is prone to numerical error under the DCC-GARCH model, thus rendering the corresponding results
biased. For this reason these results are not reported.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 298–319 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12713
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Table III. Empirical percentage of rejection for ECCC-GARCH observations

p = 2 p = 5

n 0 Alt. R1 R2 R3 W L  0 Alt. W L 

200 t2,10 t2,10 0.05 0.05 0.05 0.05 0.05 0.05 t5,10 t5,10 0.05 0.05 0.05
200 t2,10 t2,5 0.06 0.05 0.05 0.22 0.28 0.26 t5,10 t5,5 0.36 0.20 0.49

200 t2,10 LA2 0.13 0.05 0.06 0.77 0.91 0.89 t5,10 LA5 1.00 0.81 1.00
200 t2,10 GN2 1.00 0.06 0.11 1.00 1.00 1.00 t5,10 GN5 1.00 1.00 1.00

200 t2,10 N2 0.05 0.05 0.05 0.07 0.10 0.14 t5,10 N5 0.05 0.06 0.55
200 t2,10 SN2 0.08 0.07 0.07 0.25 0.47 0.50 t5,10 SN5 0.26 0.27 0.91

200 t2,10 ST2 0.07 0.07 0.07 0.15 0.28 0.25 t5,10 ST5 0.35 0.49 0.66
200 t2,5 t2,5 0.05 0.05 0.05 0.05 0.04 0.04 t5,5 t5,5 0.05 0.05 0.05

200 t2,5 t2,10 0.05 0.05 0.05 0.10 0.11 0.29 t5,5 t5,10 0.23 0.05 0.78

200 t2,5 LA2 0.06 0.05 0.05 0.15 0.25 0.27 t5,5 LA5 0.27 0.06 0.97

200 t2,5 GN2 0.98 0.06 0.09 1.00 1.00 1.00 t5,5 GN5 1.00 0.69 1.00

200 t2,5 N2 0.06 0.05 0.05 0.38 0.46 0.83 t5,5 N5 0.80 0.11 0.99

200 t2,5 SN2 0.11 0.07 0.07 0.73 0.81 0.95 t5,5 SN5 0.97 0.39 1.00

200 t2,5 ST2 0.08 0.07 0.07 0.21 0.36 0.35 t5,5 ST5 1.00 1.00 1.00

500 t2,10 t2,10 0.05 0.05 0.05 0.05 0.05 0.05 t5,10 t5,10 0.05 0.05 0.05

500 t2,10 t2,5 0.09 0.05 0.05 0.69 0.68 0.69 t5,10 t5,5 0.85 0.60 0.96

500 t2,10 LA2 0.63 0.05 0.06 1.00 1.00 1.00 t5,10 LA5 1.00 1.00 1.00

500 t2,10 GN2 1.00 0.08 0.50 1.00 1.00 1.00 t5,10 GN5 1.00 1.00 1.00

500 t2,10 N2 0.05 0.04 0.05 0.10 0.23 0.33 t5,10 N5 0.16 0.14 0.95

500 t2,10 SN2 0.14 0.08 0.09 0.91 0.95 0.95 t5,10 SN5 0.89 0.81 1.00

500 t2,10 ST2 0.12 0.09 0.09 0.57 0.64 0.60 t5,10 ST5 0.97 0.95 0.99

500 t2,5 t2,5 0.05 0.05 0.05 0.05 0.05 0.05 t5,5 t5,5 0.05 0.05 0.05

500 t2,5 t2,10 0.08 0.06 0.06 0.41 0.43 0.75 t5,5 t5,10 0.92 0.14 0.99

500 t2,5 LA2 0.10 0.05 0.05 0.76 0.73 0.82 t5,5 LA5 0.99 0.38 1.00

500 t2,5 GN2 1.00 0.07 0.22 1.00 1.00 1.00 t5,5 GN5 1.00 1.00 1.00

500 t2,5 N2 0.12 0.04 0.06 0.99 0.98 1.00 t5,5 N5 1.00 1.00 1.00

500 t2,5 SN2 0.31 0.10 0.11 1.00 1.00 1.00 t5,5 SN5 1.00 1.00 1.00

500 t2,5 ST2 0.15 0.11 0.11 0.69 0.78 0.75 t5,5 ST5 1.00 1.00 1.00

6. REAL DATA EXAMPLES

We apply our test on a real data set.
We consider the monthly rates of stock return, defined as the first difference of the log index prices

Ri,t = 100(ln Pi,t − ln Pi,t−1),

of the IBM stock and the S&P 500 index from January 30, 1926 to December 31, 1999. This dataset consists of
888 observations and was analyzed in Tsay (2010) as well as in Henze and Jiménez-Gamero (2019). The data
is available from R. Tsay’s website.2 Assuming constant trend, we subtracted mean values for considered period
and proceeded with such ‘centered’ log return rates. The de-trended monthly log returns rates and their squares
are presented on Figure 1, and suggest that a GARCH model may be appropriate. To model this time series, an
extension of CCC-GARCH(1,1) where the matrices Ak and Bk in (4.3) are not diagonal, is employed. This model
is also assumed in Henze and Jiménez-Gamero (2019).

2 https://faculty.chicagobooth.edu/ruey-s-tsay/teaching

J. Time Ser. Anal. 45: 298–319 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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310 S. MEINTANIS ET AL.

Figure 1. The monthly log returns and the square of monthly log returns

Table IV. Real data example: p-values (ECCC-GARCH)

IBM stocks and S&P index

0 R1 R2 R3 W L 

t2,5 0.70 0.80 0.86 0.21 0.44 0.50
t2,7 0.67 0.74 0.80 0.20 0.39 0.47

t2,10 0.51 0.74 0.281 0.11 0.17 0.20

t2,11 0.55 0.77 0.77 0.09 0.12 0.16

t2,12 0.51 0.79 0.79 0.07 0.10 0.13

t2,13 0.48 0.78 0.75 0.07 0.08 0.11

t2,14 0.48 0.78 0.77 0.05 0.06 0.08
t2,15 0.45 0.77 0.74 0.06 0.07 0.08

t2,20 0.38 0.75 0.72 0.03 0.02 0.03

t2,30 0.32 0.72 0.66 0.04 0.01 0.03

t2,50 0.29 0.73 0.64 0.03 0.02 0.02

For alternative degrees of freedom in the null hypothesis, the p-values of the proposed test, the Wasserstein test
and of the Rosenblatt tests were calculated using the bootstrap procedure with 500 resamples and are reported
in Table IV. From the table we can see that all tests do not reject the null hypotheses of a Student-t innovation
distribution with 𝜈 ≤ 15. For higher degrees of freedom the results are mixed with a couple of tests leading
to rejection (our test and the Wasserstein test), while the p-values of the Rosenblatt transform tests are clearly
non-significant. In this connection, we mention that our results are in line with the conclusion of Henze and
Jiménez-Gamero (2019), whereby a GARCH model with Gaussian innovations is rejected.

Following Luo et al. (2023), we now look whether the null distributions with highest p-values from Table IV give
us better portfolio VaR forecasts in comparison with others. Let Xt be the bivariate time series of the aforementioned
monthly log returns. We consider the equal-weight portfolio w = (1∕2, 1∕2)⊤ and forecast the VaR of w⊤Xt at time
t. Let Σt+1|t and VaRt+1|t be the one step forecasts of Σt+1 and VaRt+1. Note that, since the log returns are centered,
the forecast mean term Mt+1|t which appears in (Luo et al., 2023, section 5) is equal to zero. When the innovations

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 298–319 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12713

 14679892, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12713 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GOODNESS-OF-FIT TESTS FOR THE MULTIVARIATE STUDENT-T DISTRIBUTION 311

Table V. The empirical coverage rates at nominal level 𝛼 and p-values of LRcc

𝜀t

Position 𝛼 t2,5 t2,7 t2,10 N2

Panel A: Empirical coverage rates
Long 5% 0.055 0.05 0.045 0.042

1% 0.012 0.012 0.012 0.015
Short 5% 0.043 0.042 0.04 0.04

1% 0.0075 0.01 0.012 0.017
Panel B: p-values of LRcc

Long 5% 0.89 1.00 0.90 0.78
1% 0.89 0.89 0.89 0.64

Short 5% 0.79 0.79 0.64 0.64
1% 0.87 1.00 0.89 0.39

𝜀t have a multivariate StD with 𝜈 degrees of freedom we forecast for a long position at level 𝛼 as

VaRt+1|t = t̃
𝜈;𝛼

√
w⊤Σt+1|tw,

where t̃
𝜈;𝛼 is the size-𝛼 quantile of the univariate StD with unit variance and 𝜈 degrees of freedom. For a short

position, the forecasting is done by replacing 𝛼 with 1 − 𝛼.
The forecasting is implemented mimicking the procedure from Luo et al. (2023): the first 400 observations were

used to fit the model, and the fitted model is used to forecast VaRt+1|t for t ≥ 400. We assess the forecast quality
by empirical coverage rate and the conditional coverage test LRcc from Christoffersen (1998). The innovation
distributions used are bivariate StD with 𝜈 = 5, 7, and 10 degrees of freedom, and the normal distribution. The
corresponding results presented in Table V suggest that the referenced GARCH model with innovations following
a bivariate StD with 7 degrees of freedom renders well calibrated and relatively safe forecasts.

7. CONCLUSIONS

We suggest a novel approach of testing goodness-of-fit to a StD with i.i.d. data, including GARCH innovations.
The tests are easy to implement, consistent, and attain a proper limit law under the null hypothesis. Since this law
is complicated for actual use, we apply Monte Carlo approximation or bootstrap resampling to carry out the test
in practice. The corresponding finite-sample results show that the new tests are competitive against alternative
methods, and for GARCH innovations they are often more powerful by a wide margin. Moreover, the conclusions
drawn from a couple of real-data applications are in line with the stylized fact of excess kurtosis of returns in
the financial markets. It should finally be noted that while our method applies to any dimension p, the underlying
setting is not that of high dimension (p > n). In this connection analogous methods for infinite dimensional
functional data should be based on the characteristic functional rather than the CF and have been proposed by Jiang
et al. (2019) and Henze and Jiménez-Gamero (2021), while those in Bugni et al. (2009) are based on functional
analogues of the distribution function. For the standard setting of high dimension (p > n) we refer to Janková
et al. (2020), Verzelen and Villers (2010), and Kock and Preinerstorfer (2019), but these methods are mostly for
testing a high-dimensional parameter, rather than for goodness-of-fit testing for a family of distributions.
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APPENDIX A

A.1. Regularity assumptions

(RA1) The estimator ̂
𝜃n satisfies the Bahadur-type representation,

√
n
(
̂
𝜃n − 𝜃0

)
= 1

√
n

∑n
j=1Lj + oP(1), where

Lj = Hjgj; gj = g(𝜃0; 𝜀j) is a vector of d2 measurable functions such that Egj = 0 and Eg⊤

j gj < ∞; and
Hj = H(𝜃0; 𝜀j−1, 𝜀j−2,… ) is an m × d2 matrix of measurable functions satisfying E||H⊤

j Hj||2 <∞.3

(RA2) sup
𝜃∈Θ

‖‖‖
̃Σ
−1∕2

j (𝜃)‖‖‖ ≤ C, sup
𝜃∈Θ

‖‖‖Σ
−1∕2
j (𝜃)‖‖‖ ≤ C a.s.

(RA3) sup
𝜃∈Θ

‖‖‖Σ
1∕2
j (𝜃) − ̃Σ

1∕2

j (𝜃)‖‖‖ ≤ C𝜚

j, where 𝜌 ∈ [0, 1) is a generic constant.

3 The norm ||A|| of matrix A = {aij} is the L1 norm defined as
∑

i,j |aij|.
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(RA4) E
‖‖‖Xj

‖‖‖
𝜍

< ∞ and E
‖‖‖Σ

1∕2
j

(
𝜃0

)‖‖‖
𝜍

< ∞ for some 𝜍 > 0.

(RA5) For each sequence x1, x2, … of vectors of Rp, the function 𝜃 → Σ1∕2
(
x1, x2, … ; 𝜃

)
admits continuous

second-order derivatives.
(RA6) For some neighborhood V

(
𝜃0

)
of 𝜃0, there exist p > 1, q > 2 and r > 1 so that 2p−1 + 2r−1 = 1 and

4q−1 + 2r−1 = 1, and

E sup
𝜃∈V(𝜃0)

‖‖‖‖‖‖
Σ−1∕2

j (𝜃)
𝜕

2Σ1∕2
j (𝜃)

𝜕𝜃k𝜕𝜃𝓁

‖‖‖‖‖‖

p

< ∞

E sup
𝜃∈V(𝜃0)

‖‖‖‖‖‖
Σ−1∕2

j (𝜃)
𝜕Σ1∕2

j (𝜃)
𝜕𝜃k

‖‖‖‖‖‖

q

< ∞

E sup
𝜃∈V(𝜃0)

‖‖‖Σ
1∕2
j

(
𝜃0

)
Σ−1∕2

j (𝜃)‖‖‖
r
< ∞, 1 ≤ k, l ≤ v.

(RA7) E||𝜀j||4 <∞

Conditions (RA1)–(RA7) are equivalent to those typically adopted in the literature under similar settings; see
e.g. Francq et al. (2017), Henze et al. (2019), and Francq and Zakoïan (2019). In this connection Comte and
Lieberman (2003) and Bardet and Wintenberger (2009) showed that under certain mild regularity conditions the
QMLE satisfies (RA1) for general MGARCH models. Moreover in Francq and Zakoïan (2019, p. 293) one can
find the regularity conditions A1–A11, which are closely related to our conditions. In fact, these are the standard
regularity conditions on which the consistency and asymptotic normality of the QMLE in the general MGARCH
model are established; see Theorem 7 from Francq and Zakoïan (2019), where one can also find the expression for
Lj in the Bahadur representation. On the other hand, in the case of the CCC-GARCH model the somewhat weaker
and more explicit conditions CC1-CC7 of Francq and Zakoïan (2019, p. 298) (see also Francq and Zakoïan, 2012
and Francq et al., 2017) are sufficient for the QMLE to satisfy (RA1). In addition (RA2)–(RA7) also follow from
the aforementioned weaker conditions. For further discussion on the regularity conditions we refer the reader to
Francq and Zakoïan (2019, section 10.4).

A.2. Proof of Theorem 4.1

For a symmetric weight function w(t), the test statistic (4.5) can be expressed as

n,w =
∫

Rp

U2
n(t, z̃n( ̂𝜃n)) w(t) dt, (A1)

where

Un(t, z̃n( ̂𝜃n)) =
1
√

n

n∑

j=1

(
sin

(
t⊤z̃j(̂𝜃n)

)
+ cos

(
t⊤z̃j(̂𝜃n)

)
− 𝜑

𝜇

(t)
)
, t ∈ R

p
, (A2)

and z̃n(𝜃) = (̃z1(𝜃), … , z̃n(𝜃)).
We now prove that the empirical process Un(t, z̃n( ̂𝜃n)) weakly converges to a certain Gaussian process. A

convenient setting for asymptotics is the separable Hilbert space H of (equivalence classes of) measurable func-
tions f ∶ Rp → R satisfying ∫

Rp f 2(t)w(t) dt < ∞. The inner product and the norm in H will be denoted by

⟨f , g⟩H = ∫
Rp f (t)g(t)w(t) dt and ||f ||H = ⟨f , f ⟩1∕2

H
respectively. With this notation, we have n,w = ||Un||2H, where

the random element Un of H is given in (A2).
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316 S. MEINTANIS ET AL.

Set zn(𝜃) ∶= (z1(𝜃), … , zn(𝜃)) and let

Wj = zj +
v∑

k=1

𝜕

𝜕𝜃k

zj(𝜃)
|||||
𝜃=𝜃0

(
̂
𝜃nk − 𝜃0k

)
,

be the linear approximation of zj( ̂𝜃), where ̂
𝜃n =

(
̂
𝜃n1, … ,

̂
𝜃nv

)
⊤

and 𝜃0 =
(
𝜃01, … , 𝜃0v

)
⊤

.

We now proceed in two parts:

Part I: Find the limiting process of Un(t,Wn), where Wn = (W1, … ,Wn);
Part II: show that

sup
t∈BK

|Un(t, z̃n( ̂𝜃n)) − Un(t,Wn)| = oP(1), (A3)

where BK = {t ∈ Rp ∶ ||t|| ≤ K}, and K is such that ∫
Rp⧵BK

E||Un(t, zn)||2w(t)dt < 𝜀.

Part I. Notice that 𝜕

𝜕𝜃k
zj(𝜃)

|||
𝜃=𝜃0

= −Σ−1∕2
j (𝜃) 𝜕

𝜕𝜃k
Σ1∕2

j (𝜃)zj, and denote Ajk(𝜃) = Σ−1∕2
j (𝜃) 𝜕

𝜕𝜃k
Σ1∕2

j (𝜃) and 𝛼k =

E
[
Ajk

(
𝜃0

)]
. Then

Wj = zj −
v∑

k=1

Ajk

(
𝜃0

)
zj

(
̂
𝜃nk − 𝜃0k

)
,

and

Un(t,Wn) =
1
√

n

n∑

j=1

(
sin

(
t⊤Wj

)
+ cos

(
t⊤Wj

)
− 𝜑

𝜇

(t)
)
.

Denote for brevity zj = zj(𝜃0). A Taylor expansion gives

1
√

n

n∑

j=1

sin
(
t⊤Wj

)
= 1

√
n

n∑

j=1

sin
(
t⊤zj

)
+ 1
√

n

n∑

j=1

cos
(
t⊤zj

) (
t⊤(Wj − zj)

)
+ Rs(t),

where

Rs(t) =
1
√

n

n∑

j=1

1
2

(
− sin

(
t⊤
(
𝛾t⊤zj + (1 − 𝛾)t⊤Wj

))) (
t⊤
(
Wj − zj

))2

= 1

2
√

n

n∑

j=1

(
sin

(
t⊤
(
𝛾t⊤zj + (1 − 𝛾)t⊤Wj

)))
(

t⊤
v∑

k=1

Ajk

(
𝜃0

) (
̂
𝜃nk − 𝜃0k

)
zj

)2

,

for some 𝛾 ∈ [0, 1]. Applying the Cauchy-Schwarz inequality we get

|Rs(t)| ≤
1

2n
3
2

n∑

j=1

(

t⊤
v∑

k=1

Ajk

(
𝜃0

)√
n
(
̂
𝜃nk − 𝜃0k

)
zj

)2

≤
1

2n
3
2

n∑

j=1

||t||2
‖‖‖‖‖

v∑

k=1

Ajk

(
𝜃0

)√
n
(
̂
𝜃nk − 𝜃0k

)
zj

‖‖‖‖‖

2

≤ ||t||2OP

(
1
√

n

)

.
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Similarly we obtain

1
√

n

n∑

j=1

cos
(
t⊤Wj

)
= 1

√
n

n∑

j=1

cos
(
t⊤zj

)
− 1
√

n

n∑

j=1

sin
(
t⊤zj

) (
t⊤
(
Wj − zj

))
+ Rc(t),

where |Rc(t)| ≤ ||t||2OP

(
1
√

n

)
as above. Therefore,

Un(t,Wn) = Un(t, zn) +
1
√

n

n∑

j=1

(
cos t⊤zj − sin t⊤zj

)
t⊤
(
Wj − zj

)
+ R1(t)

= Un(t, zn) −
1
√

n

n∑

j=1

(
cos t⊤zj − sin t⊤zj

)
t⊤

v∑

k=1

Ajk

(
𝜃0

) (
̂
𝜃nk − 𝜃0k

)
zj + R1(t),

where R1(t) = Rs(t) + Rc(t). Further,

1
√

n

n∑

j=1

(
cos t⊤zj − sin t⊤zj

)
t⊤

v∑

k=1

Ajk

(
𝜃0

) (
̂
𝜃nk − 𝜃0k

)
zj

= t⊤
v∑

k=1

𝛼k

√
n
(
̂
𝜃nk − 𝜃0k

)
𝚿(t) +

v∑

k=1

√
n
(
̂
𝜃nk − 𝜃0k

)(1
n

n∑

j=1

Vkj(t) +
1
n

n∑

j=1

Ukj(t)

)

,

where

Vkj(t) = t⊤Ajk

(
𝜃0

) ((
cos t⊤zj − sin t⊤zj

)
zj −𝚿(t)

)

Ukj(t) = t⊤
(
Ajk

(
𝜃0

)
− 𝛼k

)
𝚿(t),

and

𝚿(t) − E
(
zj sin t⊤zj

)
= ∇E cos

(
t⊤zj

)
= ∇𝜑

𝜇

(t).

After some calculation the components of the vector 𝚿(t) = (Ψ(t1), … ,Ψ(td)) can be expressed as

Ψ(ti) = −Ezj sin tizj

∏

r≠i

E cos trzj

= 2d(1−𝜇)(2𝜇)
d𝜇+1

2

(Γ (𝜇))d
⋅ (−ti)||ti

||
𝜇−1

K1−𝜇

(√
2𝜇 ||ti

||
)∏

r≠i

|||tj
|||
𝜇

K−𝜇

(√
2𝜇 ||tr

||
)
.

Notice that E
[
Vkj

]
= 0,E

[⟨
Vkj,Vkr

⟩]
= 0,∀j ≠ r, and E

‖‖‖Vkj
‖‖‖

2

L2
< ∞. Therefore, ‖‖‖

1

n

∑n
j=1Vkj(t)

‖‖‖L2

= oP(1).

From the ergodic theorem 1

n

∑n
j=1

{
Ajk

(
𝜃0

)
− 𝛼k

}
→ 0 a.s., 1 ≤ k ≤ v, so sup

t∈Bk

‖‖‖
1

n

∑n
j=1Ukj(t)

‖‖‖L2

= oP(1).

Therefore,

sup
t∈Bk

‖‖‖‖‖‖

v∑

k=1

√
n
(
̂
𝜃nk − 𝜃0k

)(1
n

n∑

j=1

Vkj(t) +
1
n

n∑

j=1

Ukj(t)

)‖‖‖‖‖‖L2

= oP(1).
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318 S. MEINTANIS ET AL.

Finally, we obtain

1
√

n

n∑

j=1

(
cos t⊤zj − sin t⊤zj

)
t⊤

v∑

k=1

Ajk

(
𝜃0

) (
̂
𝜃nk − 𝜃0k

)
zj

= t⊤
v∑

k=1

𝛼k

√
n
(
̂
𝜃nk − 𝜃0k

)
𝚿(t) + oP(1),

and

Un(t,Wn) = Un(t, zn) − t⊤
m∑

k=1

𝛼k

√
n
(
̂
𝜃nk − 𝜃0k

)
𝚿(t) + oP(1). (A4)

From the central limit theorem in Hilbert spaces (see e.g. Bosq, 2000), the summand Un(t, zn), as an i.i.d. sum
of elements from a Hilbert space H, converges to a Gaussian random element in this Hilbert space.

Since by Assumption RA1,
√

n
(
̂
𝜃n − 𝜃0

)
= 1

√
n

∑n
j=1Lj+oP(1), applying the central limit theorem for martingale

differences (see e.g. McLeish, 1974) we get that 1
√

n

∑n
j=1Lj converges weakly to a zero mean Gaussian random

vector. Hence the second summand of (A4), being a product of a continuous function and a term which is OP(1) is
tight, and converges in C(BK), the Banach space of real-valued continuous functions on BK , to a Gaussian random
element (see Billingsley, 1968).

Expressing (A4) as

Un(t,Wn) =
1
√

n

n∑

j=1

Ξj(t) + oP(1),

where

Ξj(t) = sin(t⊤zj) + cos(t⊤zj) − 𝜑
𝜇

(t) + t⊤⟨𝜶,Lj⟩𝚿(t),

we get that Un(t,Wn) converges to a zero mean random element G with covariance function

KG(s, t) = EΞ1(s)Ξ1(t). (A5)

Part II. Now we show (A3) in two steps:

(a) sup
t∈BK

||Un

(
t, z̃j

(
̂
𝜃n

))
− Un

(
t, zj

(
̂
𝜃n

))|| = oP(1)

(b) sup
t∈BK

||Un

(
t, zj

(
̂
𝜃n

))
− Un

(
t,Wn

)|| = oP(1)

The term under supremum in (a) is

Un

(
t, z̃j

(
̂
𝜃n

))
− Un

(
t, zj

(
̂
𝜃n

))
= 1

√
n

n∑

j=1

(
sin

(
t⊤z̃j

(
̂
𝜃n

))
+ cos

(
t⊤z̃j

(
̂
𝜃n

))

− sin
(

t⊤zj

(
̂
𝜃n

))
− cos

(
t⊤zj

(
̂
𝜃n

)))
, (A6)

for t ∈ Rp. We now show that

1
√

n

n∑

j=1

(
sin

(
t⊤z̃j

(
̂
𝜃n

))
− sin

(
t⊤zj

(
̂
𝜃n

)))
= oP(1).
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To this end, a Taylor expansion yields

sin
(

t⊤z̃j

(
̂
𝜃n

))
− sin

(
t⊤zj

(
̂
𝜃n

))
= t⊤Λn,j cos

(
t⊤zj

(
̂
𝜃n

)
+ 𝛼n,jt

⊤Λn,j

)

where

Λn,j = z̃j(̂𝜃n) − zj(̂𝜃n) = ̃Σ
−1∕2

j

(
̂
𝜃n

)(
Σ1∕2

j

(
̂
𝜃n

)
− ̃Σ

1∕2

j

(
̂
𝜃n

))
Σ−1∕2

j

(
̂
𝜃n

)
Xj,

for some 𝛼n,j ∈ (0, 1).
Then

||||||

1
√

n

n∑

j=1

[
sin

(
t⊤z̃j

(
̂
𝜃n

))
− sin

(
t⊤zj

(
̂
𝜃n

))]||||||
≤

1
√

n

n∑

j=1

|tTΛn,j| ≤
1
√

n

n∑

j=1

||Λn,j|||t||,

and from conditions RA2 and RA3 we get that 1
√

n

∑n
j=1||Λn,j|| = oP(1). The cosine part of (A6) is proven

analogously and a) follows.
Turning to (b), consider the term under the supremum

|Un(t,Wn) − Un(t, zn(̂𝜃n))|

=
||||||

1
√

n

n∑

j=1

(
sin

(
t⊤Wj

)
+ cos

(
t⊤Wj

)
− sin

(
t⊤zj

(
̂
𝜃n

))
− cos

(
t⊤zj

(
̂
𝜃n

)))||||||

≤
1
√

n

n∑

j=1

||||
2 sin

1
2

(
t⊤
(
Wj − zj

(
̂
𝜃n

))
cos

1
2

(
t⊤
(
Wj + zj

(
̂
𝜃n

))

− 2 sin
1
2

(
t⊤
(
Wj − zj

(
̂
𝜃n

))
sin

1
2

(
t⊤
(
Wj + zj

(
̂
𝜃n

))||||

≤
1
n

n∑

j=1

4
√

n
||||
sin

1
2

(
t⊤
(
Wj − zj

(
̂
𝜃n

))||||
,

and since

√
n
(
Wj − zj

(
̂
𝜃n

))
= −

v∑

k,l=1

𝜕

2

𝜕𝜃k𝜃l

zj(𝜃)
||||||𝜃=𝜃∗

√
n
(
̂
𝜃nk − 𝜃0k

)(
̂
𝜃nl − 𝜃0l

)
= oP(1),

we get that |Un(t,Wn) − Un(t, zn(̂𝜃n))| ≤ ||t|| ⋅ oP(1), and (b) follows.
Applying the continuous mapping theorem to the representation (A1) ends the proof.
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