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Abstract. We prove that for all 0 � � � 2=3

kjAj

�

X �XjBj

�

k � 2

2��

kXk

1��

kAX �XBk

�

;

for all bounded Hilbert space operators A = A

�

, B = B

�

and X, as well as

kjAj

�

� jBj

�

k � 2

2��

kA�Bk

�

;

for arbitrary bounded A and B.

Let H be a complex, in�nite dimensional Hilbert space, B(H) the algebra of

all bounded linear operators on H and let k � k stands for the norm in B(H). The

following theorem compares a class of the absolute value generalized derivations on

B(H), induced by a pair of self-adjoint operators.
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As �=2 � 1=3, then an application of Theorem 3.1 of [1] for p = 2=� � 3 shows
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This theorem also enables us to derive the following perturbation result for a

class of the absolute value map in B(H).

Theorem 2. For all 0 � � � 2=3 we have
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for arbitrary bounded Hilbert space operators A and B.
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An application of the preceeding theorem to self-adjoint C and D and X = I gives
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completing the proof.
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